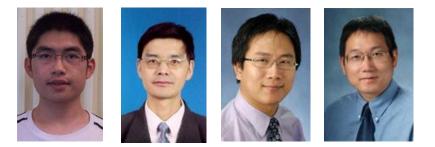
iLike: Integrating Visual and Textual Features for Vertical Search

Yuxin Chen¹, Nenghai Yu², Bo Luo¹, Xue-wen Chen¹

 ¹ Department of Electrical Engineering and Computer Science The University of Kansas, Lawrence, KS, USA
 ² Department of Electrical Engineering and Information Sciences University of Science and Technology of China, Hefei, China



• The problem

- Huge amount of multimedia information available
- Browsing and searching is even harder than text

• Text-based image search

- Text-based image search
 - Adopted by most image search engines
 - Efficient text-based index
 - Text similarity, PageRank
 - Some queries work very well
 - Clearly labeled images
 - Distinct keywords
 - Some queries don't
 - Insufficient tags
 - Gap between tag terms and query terms
 - Descriptive queries: "paintings of people wearing capes"

- Content-based Image Retrieval (CBIR)
 - Visual features: color, texture, shape...
 - Semantic gap
 - Low level visual features vs. image content
 - -sun -> nice sunshine -> a beautiful day
 - Excessive computation: high dimensional indexing?

- Put textual and visual features together?
- In the literature: hybrid approaches
 - Text-based search: candidates
 - CBIR-based re-ranking or clustering
- Our idea
 - Connect textual features (keywords) with visual features
 - Represent keywords in the visual feature space
 Learn users' visual perception for keywords

Preliminaries

Data set

- Vertical search: online shopping for apparels and accessories
- Text contents are better organized
- We can associate keywords and images with higher confidence
- In this domain, text description and images are both important

Data collection

- Focused crawling: 20K items from six online retailers
 - Mid-sized hi-quality image with text description
- Feature extraction
 - 263 low-level visual features: color, texture and shape
 - Normalization

• Keywords

- Image -> Human perception -> text description
- Perception is subjective, the same impression could be described through different words
- Calculating text similarity (or distance) is difficult distance measurements (such as cosine distance in TF/IDF space) do NOT perfectly represent the distances in human perception.

- Items share the same keyword(s) may also share some consistency in selected visual features.
- If the consistency is observed over a significant number of items described by the same keyword, such a set of features and their values may represent the human "visual" perception of the keyword.

• Example: checked

• Example: floral

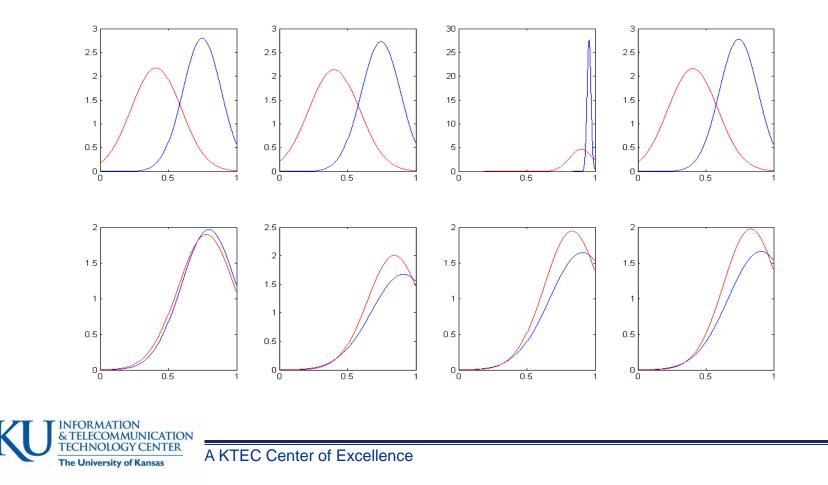
• For each term, we have

- Positive set: items described by the term
- Negative set: items not described by the term

• "Good" features

- are coherent with the human perception of the keyword
- have consistent values in the positive set
- show different distributions in the positive and negative sets
- How do we identify "good" features for each keyword?
 - Compare the distributions in the positive and negative sets...

• Distribution of visual features (term="floral")



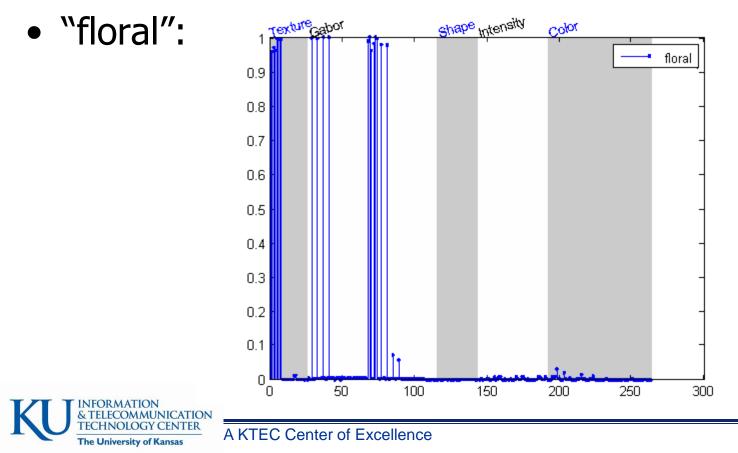
Kolmogorov-Smirnov test

• Two sample K-S test

- Identify if two data sets are from same distribution
- Makes no assumptions on the distribution
- Null hypothesis: two samples are drawn from same distribution
- P-value: measure the confidence of the comparison results on the null hypothesis.
- Higher p-value -> accept the null hypothesis -> insignificant difference in the positive and negative sets -> "bad" feature
- Lower p-value -> reject the null hypothesis -> statistically significant difference in the positive and negative sets -> "good" feature

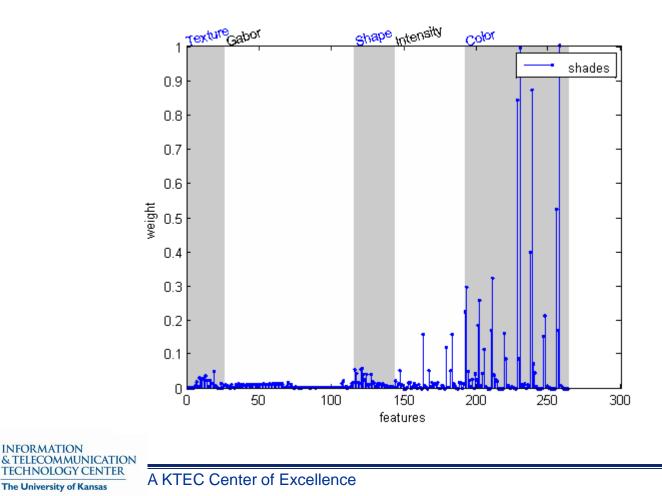
Weighting visual features

• The inverted p-value of Kolmogorov-Smirnov test could be used as weight for the feature



Weighting visual features

• More examples: "shades"

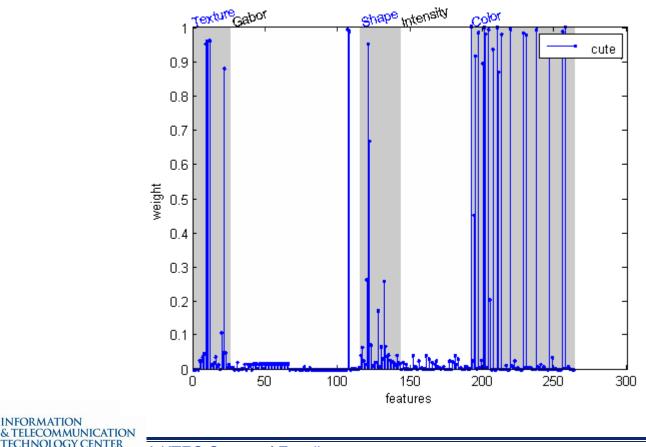


Weighting visual features

More examples: "cute"

INFORMATION

The University of Kansas

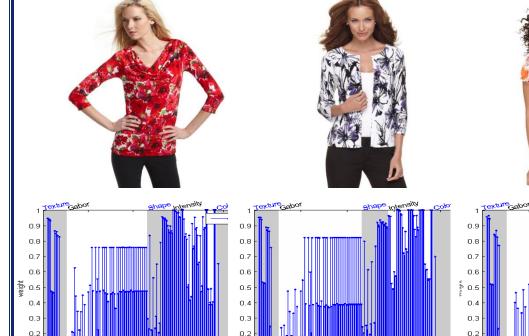


- User employs text-based search to obtain an initial set
- For each item in the initial set:
 - Load the corresponding weight vector for each keyword
 - Obtain an expanded weigh vector from the textual description.

$$\vec{q'}(Item_i, Query) = \vec{q_i} \cdot \times (\alpha \cdot \vec{\omega}_Q + \beta \cdot \vec{\omega}_E)$$

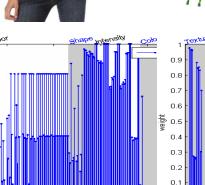
- Query: "floral"
- Initial set:

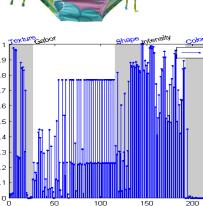
• CBIR-query vectors



0.1

0.1

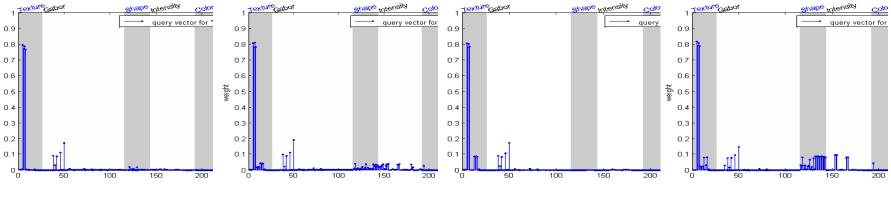




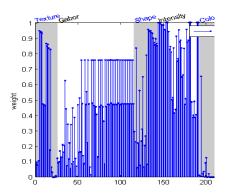
Ο.

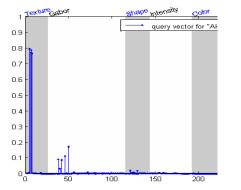
A KTEC Center of Excellence

• iLike-query vectors



Results





Results

- iLike:
 - our approach
- Baseline:
 Pure CBIR
- Query: "floral"

il ike SEARCH iLike flora SEARCH **Baseline** iLike **BCX Top. Self Bel** Score:4.38098812103271 Score:4.38098812103271 Score: 4 25298404693604 Score:4 24739360809326 Score:4 47083854675293 Score:4 25298404693604 Score:4 2473936080932 Similar Item We are able to infer the implicit user intension behind the query term, identify a subset of visual features that are significant to such intension, and yield better results.

Visual thesaurus

• Statistical similarities of the visual representations of the text terms

Words	First Few Words in Visual Thesaurus
\feminine	bandeau, hipster, breezy, pregnancy, hem, lifestyle, braid, comfy, femininity.
\flirty	flirt, bikini, vibrant, effortlessly, pointelle, dressy, edgy, splashy, swimsuit
\gingham	subtle, sparkly, floral, gauze, glamour, sassy, surplice, beautifully, pajama
\trendy	adorn, striking, playful, supersoft, shiny, nancy, ladylike, cuddly, closure
\pinstripe	smock, sporty, khaki, pleat, oxford, geometric, gauzy, ruffle, chic, thong
\embroider	suede, crochet, versatility, ultra, corduroy, spectrum, softness, faux, crease
\twill	complement, plaid, contour, logo, decorative, buckle, classically, tagless

Table 1, vieual these unus

Conclusion and future work

- iLike: find the "visual perception" of keywords
- Better recall compared with text-based search
- Better precision: understand the needs of the users

- Better "understanding" of keywords: NLP?
- More features?
- Segmentation: feature+region?

