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To find formal descriptions of the data structures that are instantiated, 
which are used as input to a proof procedure that verifies the program.

Problem Description

Input Representation

Heap graphs

Nodes:

address in memory at which a 
sequence of pointers are stored

Edges:

the values of these pointers

logical description of the instantiated data structures, 
(i.e., formal description of a set of allowed heaps)

Output Representation

Inductive predicates:

e.g., ls(!, ", #), tree(!, #)

Given a predicate, we allow 
nested subformulas

 = tree(x,�i1, i2, i3, i4 !
9t.ls(i2, t,�i5, i6, i7, i8 ! T)

⇤ ls(t, t,�i9, i10, i11, i12 ! T)).
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Figure 1. Binary tree of panhandle lists described by the formula
 = tree(x,�i1, i2, i3, i4 ! 9t.ls(i2, t,�i5, i6, i7, i8 ! >) ⇤
ls(t, t,�i9, i10, i11, i12 ! >)). > denotes the “true” formula
which holds for any heap, often used to express that there is no
further description of a nested data structure.

2. Formalization
Input Representation. As inputs we consider directed,
possibly cyclic graphs representing the heap of a program.
These graphs can be automatically constructed from a pro-
gram’s memory state; an example graph appears in Fig. 1.
Intuitively, each graph node v corresponds to an address in
memory at which a sequence of pointers v0, . . . , vk is stored.
For the purpose of this work, we discard non-pointer values.
Edges reflect these pointer values, i.e., v has edges labeled
with 0, . . . , k that point to nodes v0, . . . , vk, respectively. A
subset of nodes are labelled as corresponding to program
variables (x but not t; see below).

Output Representation. To describe the shape of the heap,
we use separation logic, which is a common tool to reason
about heap-manipulating programs in formal verification.
Just as a first order formula �(x1, . . . , xn

) denotes a set
of allowed valuations of variables x1, . . . , xn

, a separation
logic formula describes a set of allowed heaps. We refer
to O’Hearn et al. (2001); Reynolds (2002) for a precise
description of the semantics of separation logic.

As we have seen in §1, inductive data structures such as lists
or trees are described using inductive predicates such as ls
for list segments and tree for trees. We do not define a pred-
icate listtree for trees of lists, but generalize our predicates
such that they allow for nested subformulas that restrict the
shape of values included in the data structure, following
Berdine et al. (2007). For example, tree(x,') means there
is a binary tree that starts at variable x, and each value of the
list is described by the formula '. For this, the subformula
' takes 4 arguments, which are instantiated by the corre-
sponding values of fields. So for example, in Fig. 1, the
subformula of the tree predicate is instantiated by values 1,
2, 3 and 4 at the root x, where the first value is the only argu-

Formula

9Var.Heaplets

t Heaplet

ls(Expr,Expr,� Var,Var,Var,Var ! Formula )

Var Var
i5 i6 i7 i8

Heaplets

i2 t

>

Figure 2. Parse tree of 9t.ls(i2, t,�i5, i6, i7, i8 ! >) subformula
of  from Fig. 1. Terminal symbols underlined. ⇤> fragments
dropped for brevity.

ment of the tree predicate, and the next three correspond to
the values of fields val, left, right. Thus, the formula
9t.ls(2, t,�i5, i6, i7, i8 ! >) ⇤ ls(t, t,�i5, i6, i7, i8 ! >)
is derived, describing the “panhandle” shape of the list.

The formula  in the caption of Fig. 1 describes a tree of
so-called “panhandle lists.” In the figure, nodes contain the
address they are representing and are labeled with variable
names to the side. Blue nodes are elements of the tree
data structure, having three outgoing edges labeled 0, 1, 2.
Edges which are not displayed lead to the special NULL
value. Green nodes are part of the nested list data structures.
Each of the green boxes corresponds to a subheap, which
is the inner part of a nested data structure. Note that t
is not a program variable, but a name that is introduced
through existential quantification. We have found it useful
to explicitly label the heap graph node(s) that correspond to
existentially quantified variables (the t’s in Fig. 1), so we
may assume that these correspondences are also included
in the output representation (though they are not needed to
specify the separation logic formula or by the downstream
verifier).

3. Approach
Our aim is to automatically predict a separation logic for-
mula from a given heap H , i.e., given the graph in Fig. 1,
obtain  from the caption. We consider separation logic
formulae described by the following grammar:

Formula !Heaplets | 9Var.Heaplets | 9Var,Var.Heaplets | . . .
Heaplets !> | Heaplet ⇤ Heaplets
Heaplet !ls(Expr,Expr,�Var,Var,Var,Var ! Formula)

| tree(Expr,�Var,Var,Var,Var ! Formula)
Expr !NULL | Var

We denote the symbols occurring in the grammar with S,
and use N ⇢ S to refer to the subset of nonterminal sym-
bols that have appear on the left side of a production. The
nonterminal Formula is the start symbol of the grammar.

Binary tree of “panhandle lists”
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Figure 1. Binary tree of panhandle lists described by the formula
 = tree(x,�i1, i2, i3, i4 ! 9t.ls(i2, t,�i5, i6, i7, i8 ! >) ⇤
ls(t, t,�i9, i10, i11, i12 ! >)). > denotes the “true” formula
which holds for any heap, often used to express that there is no
further description of a nested data structure.

2. Formalization
Input Representation. As inputs we consider directed,
possibly cyclic graphs representing the heap of a program.
These graphs can be automatically constructed from a pro-
gram’s memory state; an example graph appears in Fig. 1.
Intuitively, each graph node v corresponds to an address in
memory at which a sequence of pointers v0, . . . , vk is stored.
For the purpose of this work, we discard non-pointer values.
Edges reflect these pointer values, i.e., v has edges labeled
with 0, . . . , k that point to nodes v0, . . . , vk, respectively. A
subset of nodes are labelled as corresponding to program
variables (x but not t; see below).

Output Representation. To describe the shape of the heap,
we use separation logic, which is a common tool to reason
about heap-manipulating programs in formal verification.
Just as a first order formula �(x1, . . . , xn

) denotes a set
of allowed valuations of variables x1, . . . , xn

, a separation
logic formula describes a set of allowed heaps. We refer
to O’Hearn et al. (2001); Reynolds (2002) for a precise
description of the semantics of separation logic.

As we have seen in §1, inductive data structures such as lists
or trees are described using inductive predicates such as ls
for list segments and tree for trees. We do not define a pred-
icate listtree for trees of lists, but generalize our predicates
such that they allow for nested subformulas that restrict the
shape of values included in the data structure, following
Berdine et al. (2007). For example, tree(x,') means there
is a binary tree that starts at variable x, and each value of the
list is described by the formula '. For this, the subformula
' takes 4 arguments, which are instantiated by the corre-
sponding values of fields. So for example, in Fig. 1, the
subformula of the tree predicate is instantiated by values 1,
2, 3 and 4 at the root x, where the first value is the only argu-
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dropped for brevity.

ment of the tree predicate, and the next three correspond to
the values of fields val, left, right. Thus, the formula
9t.ls(2, t,�i5, i6, i7, i8 ! >) ⇤ ls(t, t,�i5, i6, i7, i8 ! >)
is derived, describing the “panhandle” shape of the list.

The formula  in the caption of Fig. 1 describes a tree of
so-called “panhandle lists.” In the figure, nodes contain the
address they are representing and are labeled with variable
names to the side. Blue nodes are elements of the tree
data structure, having three outgoing edges labeled 0, 1, 2.
Edges which are not displayed lead to the special NULL
value. Green nodes are part of the nested list data structures.
Each of the green boxes corresponds to a subheap, which
is the inner part of a nested data structure. Note that t
is not a program variable, but a name that is introduced
through existential quantification. We have found it useful
to explicitly label the heap graph node(s) that correspond to
existentially quantified variables (the t’s in Fig. 1), so we
may assume that these correspondences are also included
in the output representation (though they are not needed to
specify the separation logic formula or by the downstream
verifier).

3. Approach
Our aim is to automatically predict a separation logic for-
mula from a given heap H , i.e., given the graph in Fig. 1,
obtain  from the caption. We consider separation logic
formulae described by the following grammar:

Formula !Heaplets | 9Var.Heaplets | 9Var,Var.Heaplets | . . .
Heaplets !> | Heaplet ⇤ Heaplets
Heaplet !ls(Expr,Expr,�Var,Var,Var,Var ! Formula)

| tree(Expr,�Var,Var,Var,Var ! Formula)
Expr !NULL | Var

We denote the symbols occurring in the grammar with S,
and use N ⇢ S to refer to the subset of nonterminal sym-
bols that have appear on the left side of a production. The
nonterminal Formula is the start symbol of the grammar.
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Figure 1. Binary tree of panhandle lists described by the formula
 = tree(x,�i1, i2, i3, i4 ! 9t.ls(i2, t,�i5, i6, i7, i8 ! >) ⇤
ls(t, t,�i9, i10, i11, i12 ! >)). > denotes the “true” formula
which holds for any heap, often used to express that there is no
further description of a nested data structure.

2. Formalization
Input Representation. As inputs we consider directed,
possibly cyclic graphs representing the heap of a program.
These graphs can be automatically constructed from a pro-
gram’s memory state; an example graph appears in Fig. 1.
Intuitively, each graph node v corresponds to an address in
memory at which a sequence of pointers v0, . . . , vk is stored.
For the purpose of this work, we discard non-pointer values.
Edges reflect these pointer values, i.e., v has edges labeled
with 0, . . . , k that point to nodes v0, . . . , vk, respectively. A
subset of nodes are labelled as corresponding to program
variables (x but not t; see below).

Output Representation. To describe the shape of the heap,
we use separation logic, which is a common tool to reason
about heap-manipulating programs in formal verification.
Just as a first order formula �(x1, . . . , xn

) denotes a set
of allowed valuations of variables x1, . . . , xn

, a separation
logic formula describes a set of allowed heaps. We refer
to O’Hearn et al. (2001); Reynolds (2002) for a precise
description of the semantics of separation logic.

As we have seen in §1, inductive data structures such as lists
or trees are described using inductive predicates such as ls
for list segments and tree for trees. We do not define a pred-
icate listtree for trees of lists, but generalize our predicates
such that they allow for nested subformulas that restrict the
shape of values included in the data structure, following
Berdine et al. (2007). For example, tree(x,') means there
is a binary tree that starts at variable x, and each value of the
list is described by the formula '. For this, the subformula
' takes 4 arguments, which are instantiated by the corre-
sponding values of fields. So for example, in Fig. 1, the
subformula of the tree predicate is instantiated by values 1,
2, 3 and 4 at the root x, where the first value is the only argu-
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Figure 2. Parse tree of 9t.ls(i2, t,�i5, i6, i7, i8 ! >) subformula
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dropped for brevity.

ment of the tree predicate, and the next three correspond to
the values of fields val, left, right. Thus, the formula
9t.ls(2, t,�i5, i6, i7, i8 ! >) ⇤ ls(t, t,�i5, i6, i7, i8 ! >)
is derived, describing the “panhandle” shape of the list.

The formula  in the caption of Fig. 1 describes a tree of
so-called “panhandle lists.” In the figure, nodes contain the
address they are representing and are labeled with variable
names to the side. Blue nodes are elements of the tree
data structure, having three outgoing edges labeled 0, 1, 2.
Edges which are not displayed lead to the special NULL
value. Green nodes are part of the nested list data structures.
Each of the green boxes corresponds to a subheap, which
is the inner part of a nested data structure. Note that t
is not a program variable, but a name that is introduced
through existential quantification. We have found it useful
to explicitly label the heap graph node(s) that correspond to
existentially quantified variables (the t’s in Fig. 1), so we
may assume that these correspondences are also included
in the output representation (though they are not needed to
specify the separation logic formula or by the downstream
verifier).

3. Approach
Our aim is to automatically predict a separation logic for-
mula from a given heap H , i.e., given the graph in Fig. 1,
obtain  from the caption. We consider separation logic
formulae described by the following grammar:

Formula !Heaplets | 9Var.Heaplets | 9Var,Var.Heaplets | . . .
Heaplets !> | Heaplet ⇤ Heaplets
Heaplet !ls(Expr,Expr,�Var,Var,Var,Var ! Formula)

| tree(Expr,�Var,Var,Var,Var ! Formula)
Expr !NULL | Var

We denote the symbols occurring in the grammar with S,
and use N ⇢ S to refer to the subset of nonterminal sym-
bols that have appear on the left side of a production. The
nonterminal Formula is the start symbol of the grammar.

T = (A, g(·), ch(·))

parse tree

A = {1, . . . , A}
nodes

ch : A 7! A⇤

g : A 7! S

nodes � children tuplenodes � terminal / non-terminal 
in separation logic grammar

Partial tree T<a :  Parse tree restricted to nodes {1, … , a}

Sequentially predict the next node, conditional upon everything that has 
been predicted so far:

P (T ) =
Y

a:g(a)2N

p(ch(a) | H, T < a).

Maximal likelihood training  
⥯ 

Independent classification  
Nonterminal � Children tuple
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Figure 3. Example input graph from dataset and correctly predicted formula, 9v0.ls(arg0, v0,>)⇤ls(arg1, arg3,>)⇤ls(arg3, arg3,>)⇤
ls(v0, v0,>).

9v0.ls(arg0, v0,T)
⇤ ls(arg1, arg3,T)
⇤ ls(arg3, arg3,T)
⇤ ls(v0, v0,T)

Method Top 1 Acc. Top 10 Acc.

Concatenation 
features 0.05% 0.07%

Joint features 91.5% 91.6%

Predicates used:!lists,!cyclic!lists,!panhandle!lists!and!trees.

Nesting level Number of free 
variables

Number of 
Formulas

1 1 127
1 2 33254
0 4 3515

We sample 1757 formulas from the above table (last row) 

500 heap graphs are generated per formula.

878,500 formula/heap graph combinations.

Training / validation / testing sets: 6:2:2

Problem Formalization

An example code snippet 
which is memory unsafe

//"Remove"an"element"from"a"doubly2linked"list"
void"RemoveItemFromDLL(DlL*"x,"int"itm)"
{""""""""""
""""//"if"Item"is"at"1st"node"
""""if"(x2>item"=="itm)"{"/*"..."*/"}"
""""node"*current,"*del"="x;""
""""while(del2>next"!="NULL"&&"del2>item"!="itm)"{"
""""""""del"="del2>next;"
""""}"
""""//"if"target"not"found"||"target"at"the"end"
""""if"(del2>next"=="NULL)"{"/*"..."*/"}"
""""current"="del2>previous;"
""""current2>next"="del2>next;"
""""del2>next2>previous"="current; 
  """delete(del);"
}

Prediction model: Random Forests, Multiclass Logistic Regression, Multiclass Neural Network

jointly a function of decisions we have made 
so far about the formula and the heap graph 

Binary tree of “panhandle lists”

Example input graph from dataset which is 
corrected predicted.
(nested level 0, number of free variables 4)

One can then use static program verification tools to determine whether the 
description is accurate and whether the program satisfies is memory safe.
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procedure concat(a: Node, b: Node) 
  returns (res: Node) 
  requires lseg(a, null) &*& lseg(b,null) 
  ensures lseg(res, null) 
{ 
  if (a == null) { 
    return b; 
  } else { 
    var cur := a; 
    while (cur.next != null) { 
      cur := cur.next; 
    } 
    cur.next := b; 
    return a; 
  } 
}  

Execute 

[a : 1]
[b : 2]
[cur : 1]
(1, data, 0)
(1, next, 3)
(2, data, 0)
(2, next, 0)
(3, data, 0)
(3, next, 0)

[a : 1]
[b : 2]
[cur : 3]
(1, data, 0)
(1, next, 3)
(2, data, 0)
(2, next, 0)
(3, data, 0)
(3, next, 0)
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