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FORMULATION

tems: V ={1,...,n} RV: Yy =[Y7,...,Y)]

ltem-realization Pairs: Y 4, S(?T, yy) CVYxO0

Policy
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Objective function
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Cost of a policy
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SEQUENTIAL: MIN-COST COVER

' t 1.
min cos (m), s

f(S(myv)) = Q for all yy with P(yy) > 0.

THE OBJECTIVE FUNCTION

v Normalized:
»  We derive no utility
from knowing nothing

f® =0

v Monotonic:
» Adding labels
never hurts

SCS CyYyxo0
= f(S) < f(S)

v Submodular
» Adding a label {
helps more if we
have observed
less labels

SCSCVx0
(7:9) € VX O\ S’

= f(SU{(,9)}) — f(S)
> f(S"U{(,9)}) = f(S)

v Adaptive Submodular
» The gain of an item,
In expectation over

its unknown label, {

can never increase

as we gather more
information:

SCS CVYx0
P(§) >0

= Ap(j18) 2 Ap(G 1S

Conditional Marginal Gain

Af(G18) = 2, P(Y; =y | §) (S U{G:n)}) — F(9).
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EX: BMAL -- |-D THRESHOLD
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BatchGreedy policy
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THE BATCHGREEDY ALGORITHM

Conditional marginal benefit of an item s:

Ap(s | Ays) =Ey, [f(yisyoaus) — f(yaus) | ya] -

A Expectation over  The utility of Conditioning
b} < all realizations a specific on previous
within the batch realization ~ observations

The BatchGreedy policy will greedily select
the i-th element in the j-th batch

Si’j — arg max Af(S ‘ {Sl,j; ceey Si—l,j}p}’b’)
sey N 7

the j:n batch A

BATCHGREEDY VS. OPTIMAL BATCH

E:<:i§ SEgﬁg%} (:fm)OnQ+1>

Expected cost of optimal policy
selecting batches of size k

Expected cost of
BatchGreedy

:/4‘:.@ < max 8&90/0?0}3\0|-<6_1)(1n%+1)
o ‘r‘ go
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Worst-case cost of optimal policy Minimum probability of any
selecting batches of size k realization (i.e., branch)

max

BatchGreedy

PRIOR WORK: NON-ADAPTIVE VS. SEQ.

|

MIN-COST Cover MAX Cover
' The expected €ost incurred | | The utility of seq. algorithm!
by seq. policy to achieve Q | (with cardinality cstr)
can be arbitrarily lower cannot be much higher

than the cost of the best non- than that of the best non-
ada. policy. ada. algorithm.

[Goemans and Vondrak '06] [Asadpour et al, '08]

OUR RESULT: BATCH-ADAPTIVE VS. SEQ.

Under some constraints, BatchGreedy is competitive with
the optimal sequential policy.

ASSUMPTION:
Variables are
independent
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BATCHGREEDY VS. OPTIMAL SEQ.

Theorem Fix 8 > 0. Let OPT,,. be the worst-case cost
of an optimal sequential policy constrained
to picking a number of items which is a mul-
tiple of k. Further suppose that the variables
Yi,...,Y, are independent. Then for the cost
of the BATCHGREEDY policy 7, run until it

achieves f(mg) > Q — 8,

costye(ma) < OPT . (e/(e — 1))2 (ln% + 1).

Moreover, P(f(S(Wg,yv)) > Q) >1- 0.

VERSION SPACE SAMPLING

ASSUMPTION: Hypotheses that violate more cstr. induce lower confidence.

1

MCMC sampler

Hit-and-run sampler for linear separators
and noisy observations

BMAL: APPROXIMATE IMPLEMENTATION

Step |: Sample the version space

Step 2: For each iteration within the batch, pick

seargsfrlinZ{P(z—[({(X, he(x)):xeAU {S/}}Z)}

/=1

hypotheses that agree with h; .

Step 3:At the end of each batch, observe the labels, go to Step .

EXPERIMENTS: ACTIVE LEARNING
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EXPERIMENTS: MAX INFLUENCE
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Code

www.inf.ethz.ch/~chenyux/icmll3/bmal-src.zip




