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EX: BMAL -- 1-D THRESHOLD

VERSION SPACE SAMPLING

EXPERIMENTS: ACTIVE LEARNING

EXPERIMENTS: MAX INFLUENCE
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TASK: BATCH SELECTION
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The decision tree 
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BatchGreedy policy

THE BatchGreedy ALGORITHM

THE OBJECTIVE FUNCTION
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BatchGreedy VS. OPTIMAL BATCH

SEQUENTIAL: MIN-COST COVER

min

⇡2⇧
cost(⇡), s.t.

f(S(⇡,yV)) � Q for all yV with P (yV) > 0.

w

?

f(OPT[k])

�(⇡G[2k]|yA)

f(⇡G[1k]) = �f(OPT[k])

PRIOR WORK: NON-ADAPTIVE VS. SEQ.

MIN-COST Cover

The expected cost incurred 
by seq. policy to achieve Q 

can be arbitrarily lower 
than the cost of the best non-

ada. policy.

[Goemans and Vondrak ’06]

MAX Cover

The utility of seq. algorithm 
(with cardinality cstr.) 

cannot be much higher 
than that of the best non-

ada. algorithm.

[Asadpour et al, ’08]

Under some constraints, BatchGreedy is competitive with 
the optimal sequential policy. 

OUR RESULT: BATCH-ADAPTIVE VS. SEQ.

ASSUMPTION:  
Variables are 
independent

Code
www.inf.ethz.ch/~chenyux/icml13/bmal-src.zip

ASSUMPTION:  Hypotheses that violate more cstr. induce lower confidence.

BMAL: APPROXIMATE IMPLEMENTATION

Step 1: Sample the version space

Step 2: For each iteration within the batch, pick

Step 3: At the end of each batch, observe the labels, go to Step 1.

FORMULATION
MCMC sampler

Hit-and-run sampler for linear separators 
and noisy observations

BatchGreedy VS. OPTIMAL SEQ.

✓ Normalized: 
‣ We derive no utility 

from knowing nothing

✓ Monotonic: 
‣ Adding labels 

never hurts

✓ Submodular
‣ Adding a label 

helps more if we 
have observed 
less labels

✓ Adaptive Submodular
‣ The gain of an item, 

in expectation over 
its unknown label, 
can never increase 
as we gather more 
information:

⇢
S ✓ S 0 ✓ V ⇥O
(j, y) 2 V ⇥O \ S 0

) f(S [ {(j, y)})� f(S)
� f(S 0 [ {(j, y)})� f(S 0)

⇢
S ✓ S 0 ✓ V ⇥O
P (S 0) > 0

) �f (j | S) � �f (j | S 0)

S ✓ S 0 ✓ V ⇥O

) f(S)  f(S 0)

f(;) = 0

�f (j |S) =
P

yP (Yj = y | S)
h
f(S [ {(j, y)})� f(S)

i
.

Conditional Marginal Gain

Items: 

Policy

RV: 

Item-realization Pairs:

Objective function

Cost of a policy

⇡ : 2V⇥O ! V

V = {1, . . . , n} YV = [Y1, . . . , Yn]

yA, S(⇡,yV) ✓ V ⇥O

f : 2V⇥O ! N.

costac(⇡)=EyV [|S(⇡,yV)|]
costwc(⇡)=max

yV
|S(⇡,yV)|

s argmin
s0

NX

`=1

h
P̂ (H({(x, h`(x)) :x2A [ {s0}})| {z }

hypotheses that agree with hl .

)
i

Theorem Fix � > 0. Let OPTwc be the worst-case cost

of an optimal sequential policy constrained

to picking a number of items which is a mul-

tiple of k. Further suppose that the variables
Y1, . . . , Yn are independent . Then for the cost

of the BatchGreedy policy ⇡G, run until it

achieves f(⇡G) � Q� �,

costwc(⇡G)  OPTwc

⇣
e/(e� 1)

⌘2⇣
ln

Q

�
+ 1

⌘
.

Moreover, P
�
f(S(⇡G,yV)) � Q

�
� 1� �.
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Worst-case cost of 
BatchGreedy

Worst-case cost of optimal policy 
selecting batches of size k

Minimum probability of any 
realization (i.e., branch)
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Expected cost of 
BatchGreedy

Expected cost of optimal policy 
selecting batches of size k
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Conditional marginal benefit of an item s:

Expectation over 
all realizations 

within the batch

�f (s | A,yB) = EyV

⇥
f(y{s}[A[B)� f(yA[B) | yB

⇤
.

Conditioning 
on previous 

observations

The utility of 
a specific 
realization

The BatchGreedy policy will greedily select 
the i-th element in the j-th batch

si,j = argmax

s2V
�f (s | {s1,j , . . . , si�1,j}| {z }

the jth batch A

,yB)
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