Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Yuxin Chen and Andreas Krause, ETH Zurich, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

BATCHGREEDY VS. OPTIMAL SEQ.

Theorem Fix $\beta > 0$. Let OPT_{wc} be the worst-case cost of an optimal sequential policy constrained to picking a number of items which is a multiple of k. Further suppose that the variables Y_1, \ldots, Y_n are *independent*. Then for the cost of the BATCHGREEDY policy π_G , run until it achieves $f(\pi_G) \ge Q - \beta$,

 $\operatorname{cost}_{wc}(\pi_G) \leq \operatorname{OPT}_{wc} \left(e/(e-1) \right)^2 \left(\ln \frac{Q}{\beta} + 1 \right).$

Moreover, $P(f(\mathcal{S}(\pi_G, \mathbf{y}_{\mathcal{V}})) \ge Q) \ge 1 - \beta.$

VERSION SPACE SAMPLING

ASSUMPTION: Hypotheses that violate more cstr. induce lower confidence.

٦

Step 2: For each iteration within the batch, pick

