
Near-optimal Batch Mode Active Learning and
Adaptive Submodular Optimization

Yuxin Chen and Andreas Krause, ETH Zurich, Switzerland

{x3, x6, x9}

{x1, x2} {x7, x8}{x4, x5}
{x10, x11, x12}

{+,+,+}
{�,�,+}{�,+,+}

{�,�,�}

x2 x3 x4 x5 x6 x7 x8x1

--
x9 x10 x11 x12

x2 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12

+

x2 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12

EX: BMAL -- 1-D THRESHOLD

VERSION SPACE SAMPLING

EXPERIMENTS: ACTIVE LEARNING

EXPERIMENTS: MAX INFLUENCE

0 200 400 600 8000

5

10

15

20

25

30

35

%
 N

od
es

 n
ot

 c
ov

er
ed

Number of nodes selected

Non−adaptive

10−batch

100−batch

sequential

0 200 400 600 8000

10

20

30

40

50

%
 N

od
es

 n
ot

 c
ov

er
ed

Number of nodes selected

Non−adaptive

10−batch

100−batch
sequential

TASK: BATCH SELECTION

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

Pool-based Batch Mode
Active Learning

Multi-stage Influence
Maximization in
Social Networks

Unlabeled data

1st selected batch

2nd selected batch

The decision tree
representing the
BatchGreedy policy

THE BatchGreedy ALGORITHM

THE OBJECTIVE FUNCTION

Epinions Slashdot

Australian WDBC

WDBC- ParticlesMNIST

BatchGreedy VS. OPTIMAL BATCH

SEQUENTIAL: MIN-COST COVER

min

⇡2⇧
cost(⇡), s.t.

f(S(⇡,yV)) � Q for all yV with P (yV) > 0.

w

?

f(OPT[k])

�(⇡G[2k]|yA)

f(⇡G[1k]) = �f(OPT[k])

PRIOR WORK: NON-ADAPTIVE VS. SEQ.

MIN-COST Cover

The expected cost incurred
by seq. policy to achieve Q

can be arbitrarily lower
than the cost of the best non-

ada. policy.

[Goemans and Vondrak ’06]

MAX Cover

The utility of seq. algorithm
(with cardinality cstr.)

cannot be much higher
than that of the best non-

ada. algorithm.

[Asadpour et al, ’08]

Under some constraints, BatchGreedy is competitive with
the optimal sequential policy.

OUR RESULT: BATCH-ADAPTIVE VS. SEQ.

ASSUMPTION:
Variables are
independent

Code
www.inf.ethz.ch/~chenyux/icml13/bmal-src.zip

ASSUMPTION: Hypotheses that violate more cstr. induce lower confidence.

BMAL: APPROXIMATE IMPLEMENTATION

Step 1: Sample the version space

Step 2: For each iteration within the batch, pick

Step 3: At the end of each batch, observe the labels, go to Step 1.

FORMULATION
MCMC sampler

Hit-and-run sampler for linear separators
and noisy observations

BatchGreedy VS. OPTIMAL SEQ.

✓ Normalized:
‣ We derive no utility

from knowing nothing

✓ Monotonic:
‣ Adding labels

never hurts

✓ Submodular
‣ Adding a label

helps more if we
have observed
less labels

✓ Adaptive Submodular
‣ The gain of an item,

in expectation over
its unknown label,
can never increase
as we gather more
information:

⇢
S ✓ S 0 ✓ V ⇥O
(j, y) 2 V ⇥O \ S 0

) f(S [{(j, y)})� f(S)
� f(S 0 [{(j, y)})� f(S 0)

⇢
S ✓ S 0 ✓ V ⇥O
P (S 0) > 0

) �f (j | S) � �f (j | S 0)

S ✓ S 0 ✓ V ⇥O

) f(S)  f(S 0)

f(;) = 0

�f (j |S) =
P

yP (Yj = y | S)
h
f(S [{(j, y)})� f(S)

i
.

Conditional Marginal Gain

Items:

Policy

RV:

Item-realization Pairs:

Objective function

Cost of a policy

⇡ : 2V⇥O ! V

V = {1, . . . , n} YV = [Y1, . . . , Yn]

yA, S(⇡,yV) ✓ V ⇥O

f : 2V⇥O ! N.

costac(⇡)=EyV [|S(⇡,yV)|]
costwc(⇡)=max

yV
|S(⇡,yV)|

s argmin
s0

NX

`=1

h
P̂ (H({(x, h`(x)) :x2A [{s0}})| {z }

hypotheses that agree with hl .

)
i

Theorem Fix � > 0. Let OPTwc be the worst-case cost

of an optimal sequential policy constrained

to picking a number of items which is a mul-

tiple of k. Further suppose that the variables
Y1, . . . , Yn are independent . Then for the cost

of the BatchGreedy policy ⇡G, run until it

achieves f(⇡G) � Q� �,

costwc(⇡G)  OPTwc

⇣
e/(e� 1)

⌘2⇣
ln

Q

�
+ 1

⌘
.

Moreover, P
�
f(S(⇡G,yV)) � Q

�
� 1� �.

20 30 40 50 60 70

2

3

4

Number of labels requested

%
 M

is
ta

ke
s

5000 s.

1000 s.

300 s.

2000 s.

10 20 30 40 500

2

4

6

8

Number of labels requested

%
 M

is
ta

ke
s

sequential

KLR−BMAL

random

10−batch greedy

10 20 30 40 500

2

4

6

8

10

12

14

Number of labels requested

%
 M

is
ta

ke
s

10−batch greedy

random

sequential

KLR−BMAL

10 20 30 40 50

15

20

25

30

Number of labels requested

%
 M

is
ta

ke
s

random

10−batch greedy

KLR−BMAL

sequential

Worst-case cost of
BatchGreedy

Worst-case cost of optimal policy
selecting batches of size k

Minimum probability of any
realization (i.e., branch)

. . .

. . .

. . .

. . .max

�����

�����  max

�����

����� ·
⇣ e

e� 1

⌘⇣
ln

Q

�
+ 1

⌘

Expected cost of
BatchGreedy

Expected cost of optimal policy
selecting batches of size k

. . .

. . .E
�����

�����  E
�����

����� ·
⇣ e

e� 1

⌘⇣
lnQ+ 1

⌘
. . .

.

B

A

s

. . .

Conditional marginal benefit of an item s:

Expectation over
all realizations

within the batch

�f (s | A,yB) = EyV

⇥
f(y{s}[A[B)� f(yA[B) | yB

⇤
.

Conditioning
on previous

observations

The utility of
a specific
realization

The BatchGreedy policy will greedily select
the i-th element in the j-th batch

si,j = argmax

s2V
�f (s | {s1,j , . . . , si�1,j}| {z }

the jth batch A

,yB)

. . .

k

. . .
k

