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Activizing Hough Forest

TASK: Object detection
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Orangutan Nest Detection on UAV-recorded Forest Images The first application is an interac-
tive orangutan nests detection system for biodiversity monitoring. To estimate the distribution of
critically endangered Sumatran orangutans (Pongo abelii), ecologists deploy conservation drones
above orangutan habitat in surveyed areas, so that they can obtain timely and high-quality pho-
tographs of orangutan nests high in the tree canopies [?]. Our test set contains 37 full-resolution
(4000⇥ 3000 pixels) images from two separate drone missions lunched last September in Sumatra,
Indonesia. Each of the target images contains at least one orangutan nest, and there are a total num-
ber of 45 nests in the data set, with a minimum size of 19⇥ 19 pixels. Selected examples of the nest
and non-nest image patches are shown in Figure 3.

Figure 3: Positive (left) and negative (right) examples of orangutan nests in the UAV-forest data set.

As we can see from the above examples, the positive class has high intra-class variation. For effi-
ciency considerations, we reduce the resolution of the original images by half. We then extract all
45 examples of orangutan nests of size 9⇥9 pixels, as well as 148 background image patches, as the
labeled set. Each training example is represented as a 9-dimensional vector which consists of statis-
tics (mean, maximum and minimum) of three color channels in a patch. Based on these features, we
train a linear discriminant classifier (LDA) in order to classify orangutan nests vs. background.

The base detector we employ is a sliding-window based system. As we don’t have sufficient (posi-
tive) training data, we use all the labeled images other than those in the current test image as training
set. At run time, each image patch located by the current sliding window (of size 9⇥ 9) is evaluated
with a pre-trained classifier, and used as a voting element that casts equal votes to its surrounding
area (i.e., 9 ⇥ 9 pixels). The confidence of votes from theses voting windows are determined by
their distances to the classifier’s decision boundary; positive windows that are further away from the
decision boundary have higher confidence when voting for a nest hypothesis.

To cluster similar voting elements, we use k-means clustering on the set of voting windows. More-
over, as negative detections often occur adjacently (e.g., branches are usually connected), we also
use a local clustering algorithm (i.e., segmenting nearby regions), to avoid overwhelming false de-
tections. We demonstrate both the active and passive detection results in Figure 4a. At 80% recall,
active detection (� = 0.5) obtains almost twice the precision (0.27 vs. 0.15) as passive algorithm.

Pedestrian Detection on TUD-crossing Sequence Hough based approaches offer seamless inte-
gration with the active detection framework. To demonstrate how user supervision can help with
such systems, we apply Alg. 1 to the TUD-crossing sequence, based on the Hough Forest detector
proposed in [?]. We use a discount factor � = 0.01 to penalize votes that are “similar” with any of
the incorrect votes. In this application, votes are considered “similar” if they are (1) from similar
image patches (i.e., sharing the same leaf in Hough forest), and (2) pointing to locations that have
the same offset to the voting elements. We also use “local clusters” to update the bipartite graph
when observing a false hypothesis, similar as the case for the nest detection task: edges that share
the same voting element are considered within the same local cluster, and thus will be discounted if
any of them points to a false hypothesis.

Since the background clutter doesn’t change much across frames, for active detection we choose
to share the cluster updates through the entire video sequence, rather than discard the information
acquired from user feedback and start from scratch (i.e., reset the negative count for each cluster)
for each new frame. As baseline, we compare active detection with the state-of-the-art passive
detection results on this data set, which is given by [?]. For evaluation of both algorithms, we apply
Hungarian algorithm to match the set of detections with the ground truth annotations, based on the
Jaccard similarity (similarity  40% are considered as false detections) between bounding boxes1.

We test the candidate algorithms on 41 frames of the TUD-crossing sequence (by sampling every
5th frame of the full video sequence) in the single scale scenario, and show the results in Figure 4b.
The curves are generated by varying the stopping threshold on the margin gain of new hypotheses.
We limited the maximum number of detections to be 10 for both systems (given there are at most

1Greedy matching is problematic for data sets that exhibit sufficient overlap between objects, because once
a detection is matched to one object, it cannot switch to another object even if the second is a better matching.
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Active Detection via Adaptive Submodularity

(a) Input image (b) Response image

(c) Positive coverage (d) Negative coverage

Figure 7. The active detection results on the 16th frame of the TUD-crossing sequence, at the 1st, 3rd, and 9th iteration. The current
detection is highlighted by cyan bounding box. Red bounding boxes indicate the groundtruth labels of pedestrians, and green bounding
boxes are the detections made by the active detector (Alg. 1). For illustration purpose, we only show the bounding boxes of the true
detections, and that of the current detection (regardless of its label). Each column illustrates the dynamics of the corresponding items:
(a) Detections on the input image. (b) Response (hough) image. (c) Utility obtained given the current detection is true (i.e., total sum of
edge weights covered by a observation a positive label at given locations). (d) Utility obtained given the current detection is false.

(a) Input image (b) Response image

(c) Positive coverage (d) Negative coverage

Figure 8. The active detection results on the 41th frame of the TUD-crossing sequence, at the 1st (first row), 3rd (second row), and 9th
iteration (third row).

negative update rule in the active detection framework, we will then discount all the similar votes, which indicates that,
in the following frames, the negative coverage by selecting a similar hypothesis (e.g., detecting the pole again) will be
discounted.

Figure 8 demonstrates the above changes. Similar as Figure 7, we show three detections made by the active detector, on
the 41st frame of the video sequence (i.e, the 6th test image). On the first row of Figure 8(d), we can see clearly that the
negative coverage of the pole is dramatically reduced, comparing with that of Figure 7(d). Therefore, the active detector
will be less likely to select that false positive, and thus shows better performance.

Another interesting result we found in Figure 8 is, by using the Hungarian matching algorithm, we can actually switch the
associated ground truth object of the detections made in the previous iterations, to a better matching. For example, in the
second row and third row of Figure 8, the algorithm proposes two detections (illustrated as cyan bounding boxes), both
could be matched to the same pedestrian. When the dynamic matching algorithm finds a better matching at the 9th iteration
(third row), it discards the predictions made at the 3rd iteration (second row), and therefore gives better detection results.

Furthermore, we show in Figure 9 how our active detection framework can detect highly overlapped objects, without
invoking the non-maximum suppression mechanism. In the first row, it starts to detect the 8th input image (i.e, the 51st
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Active Detection via Adaptive Submodularity
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iteration (third row).

negative update rule in the active detection framework, we will then discount all the similar votes, which indicates that,
in the following frames, the negative coverage by selecting a similar hypothesis (e.g., detecting the pole again) will be
discounted.

Figure 8 demonstrates the above changes. Similar as Figure 7, we show three detections made by the active detector, on
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negative coverage of the pole is dramatically reduced, comparing with that of Figure 7(d). Therefore, the active detector
will be less likely to select that false positive, and thus shows better performance.
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associated ground truth object of the detections made in the previous iterations, to a better matching. For example, in the
second row and third row of Figure 8, the algorithm proposes two detections (illustrated as cyan bounding boxes), both
could be matched to the same pedestrian. When the dynamic matching algorithm finds a better matching at the 9th iteration
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Cyan box: current detection;	

 Red boxes: ground-truth labels of pedestrians; 	

 Green boxes: detections made by the active detector.
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Active Detection via Adaptive Submodularity

Algorithm 2 Subroutine for constructing Bipartite graph (UAV-forest).
Input: Training set Strain = (Itrain, Y ), Test image Itest
(X, Y ) EXTRACTFEA(Strain)

M  LDATRAIN(X, Y )

for all sliding windows v on Itest do
V  V [ {v}
xtest  EXTRACTFEA(v)
s LDATEST(M, xtest)

end for
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Figure 6. Active object detection with Hough forest (TUD-crossing)

B.2. TUD-crossing and Hough-based Detector

As one of our motivating examples, Hough based approaches (Barinova et al., 2012) offer seamless integration with the
active detection framework. Essentially, they produce a set of individual voting elements that are integrated to reason about
the existence of a full object. In (Gall & Lempitsky, 2009), a direct mapping between the appearance of an image patch
and its Hough votes is learned through a random forest framework, as illustrated in Figure 6. Each tree in the forest is
constructed based on a set of patches that are sampled from the training collection of images (Figure 6(a)), and each leaf
node in the tree stores the proportion of image patches that belong to an object, and their corresponding offset vectors
from the object centroid (Figure 6(b)). At runtime, patches of the test image are fed to the forest, and passed through the
branches of the Hough trees. Then the information stored at the leaf nodes of the trees is used to cast probabilistic votes
about the existence of the object at some location (Figure ??, 6(d)).

Clustering the edges. Other than the direct benefit of a ready-to-use voting scheme, the Hough forest framework also
provides a natural and intrinsic characterization of the “similarity” of votes. If two image patches fall into the same leaf
node, then by default they are clustered together (see Figure ??). Therefore, when receiving negative feedback from an
external expert, the active detector can efficiently update the bipartite graph, by adjusting the weight (i.e., probabilities)
of simlar votes that share the same leaves for all the trees in the forest. Note that we are actually clustering edges in the
bipartite graph, not voting elements. Therefore, the updates should be focused only on the votes that are pointing to the
same directions as the false votes. As an example, in Figure 6(d), if the active detector proposes h2, and finds it to be a false
detection, then we will discount the weights for (1) the rightmost edge for voting element v5, and (2) the leftmost edge for
voting element v6. In other words, we just need to discount the two corresponding edges in the blue cluster (Figure ??) –
such that all blue voting elements are updated.

Figure 7, 8, 9 demonstrate the dynamics of the active detection process. In the following context, we use a discount factor
� = 0.1 for negative updates.

We start active detection from the 16th frame of the video sequence (Figure ??). Each time we finish detecting one frame,
we take the next frame that is 5 frames away from the current one as input. That is, the sequence of test images are frame
16, 21, 26, 31, 36, 41, 46, 51, etc.

In Figure 7, we show three detections made by the active detector. As we can see from the third row of Figure ??, the
active detector makes a false prediction at the 9th iteration, where it mistakes the pole as a pedestrian. According to the

Input image Hough forest Clusters Hough votes
Hypotheses (Obj. at certain location)

Hypothesis-outcome pairs
Outcome is RV : 

H = {h1, . . . , hn}

Active Detection 	


as a Seq. Decision Problem

Policy ⇡ : 2H⇥O ! H

yA, or S(⇡,yH) 2 H⇥O

P[YH]fromYH = [Y1, . . . , Yn} 2 O

Worst-case cost of a policy
costwc(⇡) = max

yH
|S(⇡,yH)|

(

min

⇡2⇧
cost(⇡), s.t.

f(S(⇡,yH)) � Q for all yH with P (yH) > 0.

The Min-cost Cover Problem

Objective function f : 2H⇥O ! R�0

✓ Automatic systems are inaccurate.	



✓ Human labeling is tedious/expensive. 	



✓ How to make the best of both?

V

Voting elements V = {v1, . . . , vm}
Interactions between voting elements and hypotheses: 

Hypotheses H = {h1, . . . , hn}
G = (V,H, E)

Positive coverage: 
Votes can be fully 
explained /covered by a 
true hypotheses.

Negative coverage: 
Votes that are similar 
with false votes should 
be discounted.

H

Coverage for edge (v,h) Discounted (negative) coverage for (v,h): 
E.g., g=1-0.5(#similar false votes)

weight for edge (v,h)

1. weight covered due 
to negative observations

2. remaining weight (i.e., after negative 
discount) covered due positive observations

fv,h(yA) =

1z }| {
g(v, h,yA) · wvh
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⇢
max

h0:(h0,+1)2yA
wvh0 , (1� g(v, h,yA)) · wvh

�

| {z }
2

F (yA) =
X

(v,h)2E

fv,h(yA)

�F (h | yA) = EyH [F (yA [ {(h, yh)})� F (yA) | yA] .

THM. Fix Q > 0 and β > 0. Let Cgreedy(π) be the worst-case 
cost of the greedy algorithm, using a factorial prior P on variables 
Y1, …, Yn, until it achieves expected value Q - β. Let OPTwc be the 
worst-case cost of the optimal algorithm. It holds that:  	


Cgreedy ≤ OPTwc( ln( Q/β )+1 ). Moreover, P( F( yA )≥Q ) ≥ 1-β.

Conditional Marginal Benefit of a hypotheses / detection h

Expectation over 
all realizations

Conditioning on 
previous observations

The utility of a 
specific realization

The Objective Function

Hough-transform Based Detector

Hough transform for line detection

Hough forest for pedestrian detection
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