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Distinguish among a set of hypotheses 
by performing tests from a set                                 of possible tests.
Running test t incurs cost          and produces an outcome in

Bayesian Active Learning Adaptive Submodularity Equivalence-Class Edge-Cutting (EC2) Adaptive experimental design in 
behavioural economics

The EffECXtive objective function

We behaviorally test theories of decision-making under uncertainty where the 
tests are generated dynamically using the EffECXtive algorithm.

• Prospect Theory

• Mean-Variance-Skewness

• Expected Value

• Constant Relative Risk Aversion

• How should we perform experiments to determine the most 
accurate scientific theory among competing candidates?

• How should we decide among expensive medical procedures 
to  accurately  determine  a  patient’s  condition?

• How should we select which labels to obtain in order to 
determine the hypothesis that minimizes generalization error?

We have to sequentially 
select among a set of 
noisy, expensive 
observations in order to 
determine which 
hypothesis is most 
accurate.
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Fever? 

Rash?
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Dilated Pupils?

Skin paleness?

Psychomotor
Agitation?

Fixed parameter With parameter uncertainty

We tested 11 human subjects using Caltech 
IRB protocols.

Most subjects (n=7) were classified as 
Expected Value types.

Some subjects (n=2) exhibited risk aversion 
and loss aversion and were classified as 
Prospect Theory types.

One subject violated stochastic dominance 
and behaviour was best classified using Mean-
Variance-Skewness theory.

Experimental design:

Choice between 2 lotteries. 
Each lottery has a loss, 

neutral and gain outcome 
with varying probabilities.

We varied the probabilities 
for the outcomes. 

Ground truth analysis: We randomly generate a true hypothesis and parameter. We pick the MAP hypothesis after 
30 tests and check if it corresponds to truth. We repeat this for 1000 trials.  

Adaptive submodularity [Golovin & Krause, COLT 2010] generalizes 
submodularity to the adaptive setting.

EffECXtive outperforms InfoGain when the hypotheses are identifiable, and performs as well as InfoGain when 
there is parameter uncertainty, which violates the identifiability assumption of EC2.

Reducing Bayesian active learning to Equivalence Class Determination may in some 
instances result in exponentially-large equivalence classes, which makes running EC2

challenging.   We can use rejection sampling. 

Alternatively we develop the Efficient Edge Cutting approXimate objective algorithm 
that approximates the EC2 objective function:

We have a prior distribution P modeling assumptions on the joint 
probability                                        over the hypotheses and test 
outcomes.
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In practice, observations are noisy.  Results for noise free case do not generalize.

Key Problem: Tests no longer eliminate hypotheses (only make them less likely)

Suppose all tests are run, see        , best we can do is maximize expected utility:
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Suppose we 
find

Weight of edge =
product of incident 

hypotheses’  probabilities

[1,0,0]

[1,0,1]

[1,1,1]

Suppose that                   is deterministic (noise-free)

Each test rules out a set of hypotheses, based on its outcome.

How should we test to rule out all incorrect hypotheses?

Generalized Binary Search (GBS):
Greedily maximize 

(equivalent to maximizing info-gain.)

Bayesian Active Learning with Noisy Observations:

Adaptive-Greedy is a                                       approximation

Key insight: GBS is adaptive submodular

includes all observations in         and 
possibly more. 

Results require that tests are exact (no noise)!

How should we cheaply test to guarantee that we choose        ?

Not adaptive submodular
in the noisy setting!

Existing approaches:
• Generalized binary search?
• Maximize information gain?
• Maximize value of information?
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Strategy: Reduce noisy problem 
to noiseless problem

Key Idea: Make test outcomes 
part of the hypothesis

Our noise model:

Greedily maximizing Information Gain is not adaptive submodular in the noisy case:

Linear
Tests

Binary 
search

Greedily maximizing
Information Gain 
chooses all Linear 
tests!
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Example:  

Test result positive

Test result negative

The expected conditional marginal benefit for test t upon observations :

…

With noisy observations, 
is not deterministic.  

The noise is modeled with a random 
variable     , so that
is deterministic.

Noise-free Bayesian Active Learning:
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The Optimal Decision Tree Problem

The “Or” Decomposition of DRD

Improving the Bound via Graph Coloring

The Decision Region Edge Cutting (DiRECt) Objective

HEC: The Hyperedge Cutting Algorithm
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h2 h3 h4

2,2,4 2,3,4. . . . . .. . .
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1,1,4 1,2,4 1,3,4 1,4,4

2,2,4 2,3,4 2,4,4

1 2 3 4

= E[ w(          ) - w(          ) ]fHEC(           ) 

Essentially, the EC2 objective is efficiently computed as 
elementary symmetric polynomials. We can compute the sum of 
all edge weights, and then subtract those that share a region.

Hyperedge ⇔ a (multi-) set of hypotheses that do not share a region
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DiRECt: The Noisy-Or Construction

OR F

...

f1
EC

f2
EC

fm
EC

 !
R1

R2

R3

R4

R5 R6

R1

R2

R3

R4

R5 R6

R1

R2

R3

R4

R5 R6

The Nonmyopic VoI Problem
Decisions: D = {d1, d2, … , dm},  Unknown hidden RV:  Y
Utility of making a decision d ∈ D for y is u(y, d)

Test t ∈ T = {1, … , n} are correlated with Y; has cost c(t)

After performing a set of tests A, and observe outcomes 
xA, we define the Value of Information as:

VoI(xA) = maxd2D Ey[u(y, d) | xA]

The regret of a decision: 
R(d | xA) = max

xT :P[xT |xA]>0
[VoI(xT )| {z }�Ey[u(y, d) | xA]| {z }

]

value of the most informed decision 
after observing all test outcomes

expected value of d 
after observing xA

We seek a min-cost policy π*, which suffers regret of at 
most ε (comparing with hindsight optimal):

⇡⇤ 2 argmin

⇡
cost(⇡), s.t.

8xT 9d : R(d | S(⇡,xT ))  " whenever P [xT ] > 0.

Decision Region Rd : the set of hypotheses h, for which 
decision d is an ε-optimal action:

Hypothesis h: a test outcome vector xT

We seek a min-cost policy π*, such that once terminated, 
all remaining hypotheses are within one region.

Hypothesis
TestsDecision regions

Special Cases

Each decision region corresponds to a single h

Generalized binary search 
[Garey & Graham, 1974; Dasgupta, 2004; 

Golovin & Krause, 2010; … ]

Greedy is near-optimal:  cost(π)= (ln(1/pmin ) + 1)ᐧ cost(π*)

Decision regions do not overlap

Greedy is near-optimal:  cost(π)= (2 ln(1/pmin ) + 1)ᐧ cost(π*)

Example: 1-dimensional threshold function

Example: Medical Diagnostics

Equivalence Class Edge Cutting (EC2) [Golovin et al., 2010]

Σi≠j w(Ri x Rj) (Σi P(Ri))2 Σi P(Ri)2

The Decision Region Determination (DRD) Problem

Decision regions and hypotheses The hypergraph of cardinality k=3

cost(π)= (k ln(1/pmin ) + 1)ᐧ cost(π*)

Constructing the hypergraph is NP-hard [Javdani et al. 2014]

s

s

Cutting all edges in (at least) one of 
the graphs is both sufficient and 

necessary to identify the true region! 

R1 R2

h2 h3 h4h1
∨

R1

R2

R3 R1

R2

R3R1
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R3

_ _ Edges cut by t

Xt = 1
Xt = 0
always

Subregions

R1

R2

R3

h1

h2

h3

h4

t :

Xt = 0

Xt = 1

The DRD Problem

Main idea: 
To jointly optimize multiple EC2 

objective functions corresponding 
to the decomposed graphs.

F ( ) = 1�
mY

i

�
1� f i

EC( )
�

Lemma: Noisy-Or of fEC’s preserves adaptive submodularity.

Greedy is near-optimal:  cost(π)= (2m ln(1/pmin ) + 1)ᐧ cost(π*)

number of decomposed graphs

One can partition the regions via 
Graph Coloring

cost(π)= (2 ⨉ (#Colors) ⨉ ln(1/pmin ) + 1) cost(π*)

# of colors is 
bounded by the 

max degree of the 
color graph

Candidate Algorithms

• GBS: Generalized Binary Search 

• GBS-DRD: GBS with DRD stopping criteria

• EC2: Equivalence Class Edge Cutting

• EC2-DRD: EC2 with DRD stopping criteria

• VoI: Myopic Value of Information

• HEC: Hyperedge Cutting

• DiRECt: Decision Region Edge Cutting 

Hypotheses Strategies
1 2 3 4 5 6 7

Description Weight9(%) Wait Kill9Flies Swap9eggs Restore9meadowsApril9DD9and9BurnNo9salvage No9disturbance
Too9young 9.4 0.586 0.491 0.581 0.735 0.663 0.539 0.402
Black9flies 29.1 0.021 0.425 0.242 0.373 0.253 0.589 0.139
Social9conditioning 11.9 0.093 0.145 0.22 0.429 0.321 0.218 0.485
Nutrient9limitation:9NNWR22.8 0.036 0.081 0.254 0.992 0.863 0.128 0.166
Nutrient9limitation:9winter5.9 0.093 0.119 0.26 0.466 0.405 0.185 0.223
Nutrient9limitation:9both6.6 0.036 0.077 0.243 0.792 0.703 0.172 0.179
Egg9salvage 4.4 0.147 0.622 0.662 0.436 0.291 0.354 0.158
Disturbance 10 0.12 0.393 0.74 0.363 0.216 0.168 0.256
Expected9value 0.106 0.284 0.343 0.59 0.475 0.331 0.231

Approximate comparison-based Search Active Touch-based localization 

Adaptive management for biodiversity conservation
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APPLICATION TEST / ACTION DECISION
Active Loc. guarded move manipulation action

Pref. learning. pair of movies recommendation
Conservation monitoring / probing conservation action
Risky choice pair of lottery choices valuation theory

Table 1: Tests and decisions for different applications
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Figure 3: Experimental results - Robot

with algorithms designed for special cases of the DRD prob-
lem: generalized binary search (GBS) and equivalence class
edge cutting (EC2)7. We compare with two versions of these
algorithms: one with the algorithms’ original stopping crite-
ria, which we call GBS and EC2; and one with the stopping
criteria of the DRD problem, which is referred to as GBS-
DRD and EC2-DRD in the results.

Active touch-based localization
Our first application is a robotic manipulation task of
pushing a button, with uncertainty over the target’s pose.
Tests consist of guarded moves (Will and Grossman 1975),
where the end effector moves along a path until contact is
sensed. Those hypotheses which would not have produced
contact at that location (e.g., they are far away) can be
eliminated. Decisions correspond to putting the end effector
at a particular location and moving forward. The coinciding
decision region consists of all object poses where the button
would successfully be pushed. Our goal is to concentrate
all consistent hypotheses within a single decision region
using the fewest tests. We model pose uncertainty with 4
parameters: (x, y, z) for positional uncertainty, and ✓ for
rotation about the z axis. An initial set of 20000 hypotheses
are sampled from a normal distribution N(µ, ⌃), where µ is
some initial location (e.g., from a camera), and ⌃ is diagonal
with �

x

= �
y

= �
z

= 2.5cm, and �
✓

= 7.5�. We then run
DIRECT on both simulated data and a real robot platform.
In the first simulated experiment, we preselect a grid of 25
button pushing actions D while ensuring the overlap r is
minimal. We randomly generate guarded moves T to select
from, varying |T | . In the second, we randomly generate

7When hypotheses are in multiple decision regions, EC2 cannot
be used as is. Hence, we randomly assign each hypothesis to one
of the decision regions that it is contained in.

(a) Hypotheses (b) Tests (c) Decision regions

Figure 4: Experimental setup for touch-based localization. (a) Un-
certainty is represented by hypotheses over object pose. (b) Tests
are guarded moves, where the end effector moves along a path un-
til contact is sensed. Hypotheses which could not have produced
contact at that location (e.g. they are too far or too close) are re-
moved. (c) Decisions are button-push attempts: trajectories starting
at a particular location, and moving forward. The corresponding re-
gion consists of all poses for which that button push would succeed.

decision regions, varying |D| while fixing |T | = 250. To
compute the myopic value of information (VOI) (Howard
1966), we define a utility function u(h, R) which is 1 if
h 2 R and 0 otherwise. Results are plotted in Figure 3(a)
and Figure 3(b). Note that HEC cannot be computed in this
experiment, as the overlap r becomes very large8 and HEC
quickly becomes intractable. We see that DIRECT generally
outperforms other baselines. Here, myopic VOI performs
comparably – likely because the problem is solved within
a short horizon. We also demonstrate DIRECT on a real
robot platform as illustrated in Figure 4. See supplemental
material for more results and a video demonstration.

Comparison-based preference learning
The second application considers a comparison-based movie
recommendation system, which learns a user’s movie prefer-
ence (e.g., the favorable genre) by sequentially showing her
pairs of candidate movies, and letting her choose which one
she prefers. We use the MovieLens 100k dataset (Herlocker
et al. 1999), which consists a matrix of 1 to 5 ratings of 1682
movies from 943 users. For fair comparison with baselines,
we adopt the same parameters as reported in (Javdani et
al. 2014). That is, for each movie we extract a 10-d feature
representation from the rating matrix through SVD. To
generate decision regions, we cluster movies using k-means,
and assign each movie to the r closest cluster centers.

We demonstrate the performance of DIRECT on Movie-

Lens in Figure 5(a) and 5(b). We fix the number of clusters
(i.e., decision regions) to 12, and vary r, the number of as-
signed regions for each hypothesis, from 1 to 6. Note that r
controls the hyperedge cardinality in HEC, which crucially

8Moreover, when running on a real robot, many actions are in-
feasible due to kinematic constraints. Sampling decisions enables
us to generate arbitrarily many, ensuring we always have many de-
cisions available.

MovieLens MovieLens - time

EMPCranesEMPCranes: the hypotheses-decision utility table Experimental setup for touch-based localization
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