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Motivating Application
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Adaptively find k tests that are 
maximally informative about Y

⇡⇤
= argmax

⇡2⇧[k]

I(⇡;Y )

set of policies of length k

At step ℓ, pick
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Example
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Example (GBS with persistent noise)
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Indicator of how much the channel can differentiate between d and d′.

Main Results
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Key Lemma

Consider any adaptive policy 𝝅 which chooses 𝑘 tests.  
We must have:

max

e2[m]
I (Xe;Y ) � I (⇡;Y )
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Gain of greedy at a single step

Gain of 𝝅 in 𝑘 steps

constant # of hypotheses

From Key Lemma to Main Results

Gain of greedy at a single step

Gain of 𝝅 in 𝑘 steps
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For adaptive monotone and adaptive submodular objective function f:

max

e2[m]
Gainf (Xe | past observation) �

Gainf (⇡ | past observation)
k

.

Key Lemma — Proof Outlines

Step 1. If 𝕀(𝑿𝑒; 𝒀) is small, then the probability of the most likely 
outcome of test 𝑒 (i.e., 𝑝𝑒,max＝maxd Pr(𝑫𝑒＝𝑑𝑒) ) is large.

Step 2. Consider an oracle 𝑮 sitting beside the system 𝝅, and 
observing its actions. For each test 𝑒 that 𝝅 picks, 𝑮 also observes the 
deterministic (i.e., the “noise-free” version) outcome 𝑑𝑒.  One can 
show that:  𝕀(𝝅; 𝒀) ≤ 𝕀(𝑮; 𝒀).

Step 3. If for all test 𝑒∈[𝑚], 𝑝𝑒,max is large, then 𝕀(𝑮; 𝒀) is small.
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We

De XeY 𝕀(𝑿𝑒; 𝒀)  = 𝕀(𝑿𝑒; 𝑫𝑒)

deterministic mapping noise channel (perturbation by 𝑁𝑒) 

Intuitively, smaller 𝕀(𝑿𝑒; 𝑫𝑒) ⇒ more skewed distribution over 𝑫𝑒.

The oracle 𝑮 observes what 𝝅 
observes (i.e., 𝑿𝑒’s), as well as the 
true outcome (i.e., 𝑫𝑒’s)

 𝝅 observes noise-corrupted 
test outcomes (i.e., 𝑿𝑒’s)

We expect that 𝑮 has a better 
idea about 𝒀 than 𝝅 has.

Pr(𝑫𝑒₁＝0), Pr(𝑫𝑒₂＝𝟷), Pr(𝑫𝑒₃＝𝟷) large ⇒ Pr(𝑫𝑒₁＝0, 𝑫𝑒₂＝𝟷, 𝑫𝑒₃＝𝟷) 

large. (Union B.)

“Good event”: event with 
most likely outcome.

The conditioning entropy of 
𝒀 given that “good event” is 
realized is high 

⇒ 𝕀(𝑮; 𝒀) is low.

Combining Step1–3, 𝕀(𝑿𝑒; 𝒀) is small ⇒ 𝕀(𝝅; 𝒀) is small.

Minimum value of separability 
over all the channels We

Smin = min
e2[m]

S(We)

The Necessity of Smin  
If Smin is sufficiently large, one can find a “Treasure Hunt” 
example, where the ratio between the gain of greedy and the 
smarter policy is at most 𝑐 𝑆min , where 𝑐 is some constant.

The most informative selection policy has been 
used since 1950’s [Lindley, 1956]

In the non-
adaptive 
setting, Greedy 
is near-optimal

[Krause and 
Guestrin, 2005]

In the 
noiseless 
setting, 
Greedy is 
near-optimal

[Dasgupta, 
2005; 

Golovin and 
Krause 2011]

Tests are noisy, 
but can be 
repeated with 
i.i.d. outcome 
— Reduction to 
Noiseless Case

[Nowak 2009]

In this paper, we present the first rigorous 
analysis of the most informative selection 

policy in the persistent noise setting.
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Mutual information between π and Y, i.e., the expected 
reduction in entropy of  Y, given that we have run π.
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The Sequential Information 
Maximization Problem

Applications

• Active learning [MacKay, 1992; Settles, 2012]

• Experimental design [Lindley, 1956; Fedorov, 1972]

• Evaluation of (stochastic) Boolean functions 
[Kaplan et al., 2005]

• Channel coding with feedback [Horstein, 1963]

• Active hypothesis testing [Chernoff, 1959]

…

?slide=next
?slide=next

