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The Equivalence Class Determination Problem

Problem Setup

Experiments

Greedy Heuristics

Extension to the Noisy Setting

Target variable
Y = {y1, y2, … , yt}

Root-cause
Θ = {𝜃1, 𝜃2, …,𝜃n}

Tests T = {1,… m}, each with unit cost

Min-cost policy π*,  with expected 
prediction error at most 𝛿:

Existing Approaches

• Uncertainty sampling
• Maximize information gain [e.g., Lindley’56]
• Maximize value of information [e.g., Howard’60]

Adaptive Submodularity  [Golovin & Krause, 2010]

Gain less Gain more

Playing an action 
earlier only 
increases its 

expected marginal 
benefit.

ECED adaptively pick tests 
that “discount” edge 

weight the most.

Main idea: 
“discount” the weight of hypothesis by its likelihood ratio

Random: Random Selection of Tests

US: Uncertainty Sampling 

INF: Information Gain

VoI: Myopic Value of Information

EC2-Bayes: EC2 with Bayesian Updates

ECED: Equivalence Class Edge
Discounting 

Comparison-based Search

MovieLens

w(          )  =  w(          )    w(          )�

Equivalence Class Edge Cutting (EC2) [Golovin et al., 2010]

Σi≠j w(yi x yj) (Σi P(yi))2 Σi P(yi)2

EC2: Equivalence Class Edge Cutting

• Assuming tests’ outcomes are noise-free: P(𝑥 | 𝜃) ∊ {0,1} 
• Equivalence class edge cutting [Golovin & Krause, 2010; … ]
• Greedy is near-optimal:  cost(π)= (2 ln(1/pmin ) + 1)ᐧ cost(π*)

Account for Non-informative Tests

Risky Choice Selection

Applications Sequential experimental design;
Interactive troubleshooting; 
Active testing; Active learning …

…
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Example Medical diagnosis

(Noisy) Bayesian Active Learning

perr(xA) = 1 � max

y2Y
P [y | xA]

p⇤ 2 argmin

p
cost(p),

s.t. E
xT [perr(S(p, xT ))]  d.

Observations seen by policy π, if the 
tests outcomes are realized as xT

Test outcomes X1:m are correlated with Θ

Prior P(Θ) 
Conditional probabilities P(X | Θ) ∈ [0,1]
Mapping r from Θ to Y: r(𝜃) = y

Given

Want

Def.

Thm.  All these approaches may require exponentially 
 more tests than the optimum
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[Golovin et al., 2010]

[This paper — ECED: Equivalence Class Edge Discounting]

Likelihood ratio is small if 
the hypothesis is less likely 

to be “correct”.

Main Results

Key Lemma — Proof Sketch
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Key idea

this test is not informative

Thm:  ECED is competitive with the optimal policy that 
  achieves some lower error probability.

It suffices to run ECED
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iterations to achieve expected error probability 𝛿. 

the worst-case cost of OPT which achieves 
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ECED: Algorithmic Details
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Introducing an “offset term” 
so that the gain of any 

non-informative tests is 0

A test is non-informative if observing 
its outcome does not affect the 

distribution over the root-causes.

Initialization:

Loop:

A ∆; xA  ∆;

8{q, q0} 2 Edges, set wq,q0  Pr(q)Pr(q0);

e

⇤ 2 argmax

e

E
x

e

[Weight-Discounted(x

e

| xA)

A A [ {e

⇤}; xA  xA [ {(e⇤, x

e

⇤)};

� Offset(e | xA)] ;

Lem:  The 1-step gain of ECED regarding some auxiliary object 
function fAUX is “significant”, compared with the total gain of OPT.

Our proof relates the 1-step gain of ECED (greedy) to the 
k-step gain of the optimal algorithm.

• Introduce an information-theoretic auxiliary function fAUX 
• Bound fAUX against the target objective function pERR
• Show that ECED is effective in optimizing fAUX, and hence pERR.
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After performing a set of tests A, and 
observing outcomes xA, the error probability 
of the MAP estimator of  Y is
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Medicine Surgery
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Test 1:

Test 2:
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