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Principled approaches that scale poorly

Problem Setup

Greedy heuristics with no guarantees

Existing Approaches & Challenges

• Uncertainty sampling
• Maximize information gain [e.g., Lindley’56]
• Maximize value of information [e.g., Howard’60] 
• May require exponentially more tests than the optimum

• Submodular Surrogate-based approaches (e.g., EC2 [Golovin & Krause, 2010])
• Greedy is near-optimal:  cost(π)= (2 ln(1/pmin ) + 1)ᐧ cost(π*)
• Exponential run time in terms of the number of available tests

Applications Sequential experimental design;
Active testing; Active learning …

Example Interactive troubleshooting
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Tests T = {1,… n}, each with unit cost
Binary outcomes X1:n correlated with Y

DecisionRoot-cause

{d1, d2, … , dt}{y1, y2, … , ym}

Value of Information (VoI)

Root-causes Y, Decisions D, Tests T
Prior P(Y, XT) 
Conditional probabilities P(X | Y) ∈ [0,1]
Utility function u(y, d)

Given

Value of Information

Regret of a decision

VoI(xA) = maxd2D Ey[u(y, d) | xA]

R(d | xA) = max

xT :P[xT |xA]>0
[VoI(xT )| {z }�Ey[u(y, d) | xA]| {z }

]

value of the most informed decision 
after observing all test outcomes

expected value of d 
after observing xA

Min-cost policy π*, which suffers regret of at most ε 
(comparing with hindsight optimal):

⇡⇤ 2 argmin

⇡
cost(⇡), s.t.

8xT 9d : R(d | S(⇡,xT ))  " whenever P [xT ] > 0.

Def.

outcomes 
of tests in A

Want

Observations seen by policy π, if the 
tests outcomes are realized as xT

Virtual Agent

Customer

Practical concerns
• Existing approaches (e.g., EC2) assume a known prior P(Y, XT)

Our Contribution
A principled, yet efficient
• sampling-based online learning framework,
• built upon submodular surrogates

VoI: Myopic Value of Information

US: Uncertainty Sampling +DHE
INF: Information Gain +DHE

EC2: EC2 +DHE
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2 Background on Submodular Surrogates for VoI
[Golovin et al., 2010; Javdani et al., 2014; Chen et al., 2015]

Decision Region Rd : the set of hypotheses h, for which 
decision d is an ε-optimal action

Hypothesis h: a test outcome vector xT

A min-cost policy π*, such that once terminated, all 
remaining hypotheses are within one region

Def.

Want

Tests = {                        }

Decisions = {                         }

Root-causes = {                                         }
[0,0,0]
[1,0,0]

[1,1,1][1,0,1][0,1,0]Hypotheses = {                                            }
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Observing x1=1

• The edge-cutting function is adaptive submodular
• Greedy is near-optimal:  cost(π)= (2 ln(1/pmin ) + 1)ᐧ cost(π*)
• Per iteration runtime is O( #hypotheses )

The Equivalence Class Edge Cutting (EC2) algorithm

Efficient Optimization of VoI Converting Offline to Online

Application: Online Troubleshooting

…

…Virtual Agent

Customer 1 Customer 2 Customer 3

• Assuming the prior P(Y, XT) is unknown
• Estimate the distribution via posterior sampling

Assuming the prior P(Y, XT) is given

We want to create a small sample of hypotheses, such that 
it covers a large fraction of the total probability mass P(H)

via Dynamic Hypothesis Enumeration (DHE)

H̃H

“Local” Hypothesis Generator 

† W.l.o.g. assume tests’ outcomes are defined such that P(Xi = 1 | y)≥0.5.

Root-cause y, Conditional probabilities P(X | Y) ∈ [0,1],
Covering threshold !, Candidate hypotheses set Fy

Input

Most likely hypotheses Ly* given y.Output

Sort tests in decreasing order† of P(Xi = 1 | y);Init

If Fy = ∅ then Fy ← {h1 = [1,1,1, …,1]};

Loop h* = argmax h∈ Fy P(h | y);
Ly* ← Ly* ∪ {h*};

Fy ← Fy \ {h*} ∪ { hc1 , hc2 };
Generate (at most) two children‡ hc1 , hc2 from h*

H̃
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local hypothesis generator submodular 
surrogate

enumerating the most likely hypotheses for a given root-cause

Current hypothesis Child 1 Child 2

h* = [0,1,1,0,1] hc1 = [0,1,1,0,0] hc2 = [0,1,0,1,1]

flip if last bit is “1” swap the last “1,0” pair

‡

Iterative Filtering & Resampling

merging hypotheses, resampling whenever necessary

Thm:  With probability at least 1- !, running EC2 with dynamic 
hypothesis enumeration outputs an ε-best decision with cost at 
most

worst-case cost of the optimal 
algorithm with ε-optimal decision

minimal probability of 
hypotheses in the sampled set

✓
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✓
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◆
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◆
· OPT

αij , βij params of Beta distributions, P(Y), customers {1, …, k}Input

Set αij(1) ← αij ; βij(1) ← βij for all i, j;Init

Loop A ← ∅; xA ← ∅
For all i ∈ {1,…, n}, j ∈ {1,…, m}, draw {θij(t) ∼ B(αij(t), βij(t))};
Run EC2 with dynamic hypothesis enumeration to engage customer t;
Observe xA and the true root-cause;

Update αij , βij parameters;

e.g., generating the distribution parameters P(Xi = 1 | yj)from Beta priors

Thm:  Let " be the maximal EC2 cost for any of the k customers.  
As k ⟶∞, the average regret of OnlineVoI is upper bounded by η/".
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Dataset
• 1100 root-causes

• 950 tests with binary outcomes
• collected from real-world contact 

center agents

Results

• EC2+DHE consistently outperforms 
the alternatives in terms of label 
complexity (a.k.a., cost)

• Average utility (a.k.a reward) of 
OnlineVoI approaches the optimal 
utility over time.

OnlineVoI 

In the case of noisy tests there are
exponentially many  

test-outcome vectors (aka hypotheses) 
and EC2 can't directly be applied
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