Understanding the Role of Adaptivity in Machine Teaching The Case of Version Space Learners

Caltech

Yuxin Chen

Adish Singla

Oisin Mac Aodha Pietro Perona

Yisong Yue

Introduction

Motivating Applications

Citizen science, crowdsourcing services, medical diagnosis

Learning vs. Teaching Setting

Canonical Example: I-D Threshold Classifier

Threshold classifier h(x)=1 iff $x \ge \theta_h$ where $\theta_h \in \{1, 2, ..., n\}$

	complexity
Passive learning	Θ(n)
Active learning	$\Theta(\log(n))$
Non-adaptive teaching	2
Adaptive teaching	1*

How much speed up a teacher can achieve from adaptivity?

1*: under additional restriction on learner's update rule

Teaching Model

Teaching a "Version Space" Learner

 \mathcal{X}, \mathcal{H} : Discrete, finite sets Learner starts from initial hypothesis $h_0 \in \mathcal{H}$

At time t:

teacher provides x_t , $h^*(x_t)$

learner updates the hypothesis space $\mathcal{H}_{t+1} = \mathcal{H}_t \cap \mathcal{H}(x_t)$

learner selects a new hypothesis $h_{t+1} \in \mathcal{H}_{t+1}$ randomly

Teaching stops when $h_t = h^*$

State-dependent Preference

Learner's preference of next hypothesis depends on the version space, as well as the current hypothesis

Learner's preference function $\sigma: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$

Given current hypotheses h_t and two hypotheses

 $\sigma(h_i; h_t) \leq \sigma(h_i; h_t)$: Learner prefers to pick h_i instead of h_i

 $\sigma(h_i; h_t) = \sigma(h_j; h_t)$: Learner could pick either one of these two randomly

At time t, the learner selects a new hypothesis h_{t+1} randomly from $\{h \in \mathcal{H}_{t+1}: \sigma(h; h_t) = \min_{h' \in \mathcal{H}_{t+1}} \sigma(h'; h_t)\}$

Special Cases: State-independent Preference

Classical model (TD) [Goldman, Kearns '92]: Learner picks next hypothesis at random $\forall h, h' \in \mathcal{H}: \sigma(h'; h) = c$

TS(h*): Optimal teaching sequence for h* Equivalent to set cover of $\mathcal{H} \setminus \{h^*\}$ by \mathcal{X}

Teaching Dimension $TD(\mathcal{H}, \mathcal{X}) := \max_{h^* \in \mathcal{H}} |TS(h^*)|$

Learner picks next hyp. based on a global preference $\forall h' \in \mathcal{H}: \sigma(h'; h) = c_{h'} \longleftarrow$ a constant only depends on h'

Global preference-based model (PBTD) [Gao et al. '16]

TS(h*): Optimal teaching sequence for h* Given by the following notion of set cover: $\min |X|$, s.t. $\forall h \in \mathcal{H}(X) \setminus \{h^*\}: \sigma(h; \cdot) > \sigma(h^*; \cdot)$

Proposition [a necessary condition to gain from adaptivity]

Learner must have **state-dependent** preferences: Choice of next hypothesis $h_{t+1} \in \mathcal{H}_{t+1}$ depends on h_t

Theorem There exist hypothesis classes with state-dependent preferences, where the optimal non-adaptive teacher, in the worst case, requires exponentially more teaching examples than the optimal adaptive teacher.

Examples: State-dependent Pref.

2-Rec: Disjoint union of geometric objects [Gao et al. '17]

Difficulty of teaching: $TD(\mathcal{H},\mathcal{X})=O(n^2)$ for $n \times n$ grid size

Our model of preferences $\sigma_{2\text{-}Rec}$

 $\sigma_{2\text{-}Rec}$: Prefer hypotheses in the same complexity subclass $\sigma_{2\text{-Rec}}$: Within same subclass, prefer hypothesis with min. edge edits

Experimental Results

Teaching Algorithms

Random

Randomly chosen examples; stops when $h_t = h^*$

Classical

Set cover for $\mathcal{H} \setminus \{h^*\}$; stops when $h_t = h^*$

2R-NonAdaT

Observes h_0

Uses $\sigma_{2\text{-Rec}}$ and h_0 to optimally select examples Teaching stops when $h_t = h^*$

2R-AdaT

Observes $h_t \forall t$

Uses $\sigma_{2\text{-Rec}}$ and h_{t} to optimally select an example at tTeaching stops when $h_1 = h^*$

2-Rec Class: Simulated Learners

• $n \times n$ grid size; $h_0 \in \mathcal{H}^2$, $h^* \in \mathcal{H}^1$

• 50 simulated learners with $\sigma_{2\text{-Rec}}$ preferences

Grid size: n x n

Classical: $O(n^2)$

2R-NonAdaT: $O(|h_0|) = O(n^2)$

2R-AdaT:

 $O(\log(|h_0|)) = O(\log(n^2))$

2-Rec Class: Human Learners

Preference elicitation:

Users were asked to update the position of the orange rectangle so that green cells are inside and blue cells are outside

Preference elicitation:

Participants favor staying at their current hypothesis if it remains valid, along with preferring smaller updates.

- 8 × 8 grid size; $h_0 \in \mathcal{H}^2$, $h^* \in \mathcal{H}^1$
- 200 participants from a crowdsourcing platform
- **2R-AdaT** and **2R-NonAdaT** teachers use $\sigma_{2\text{-Rec}}$

