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a Summary 9 Explanation-based Machine Teaching

Motivating Applications Problem Formulation
Citizen science, crowdsourcing services, medical diagnosis Teaching set {(x.y e}
xieX image
yie?d label for x;
Illustrative Example Baird Sparrow e e Bk explanation for (x; yi): k-d Boolean vector, each e

indicates the importance of the jth attributes a; € A.

Field Guide for Naturalists

S indices of selected teaching examples
e.g., teaching a novice
to classify bird images Attention model F Hypothesis H Bayesian model of the learners
Fachfe & X — Bk Fachh=gof X—>9Yisa P(f), P(g) |
composite of the attention P(ei| f x) = viif fix) # e

Decision model G

|| Label for Baird Sparrow
Fachge ®: (Ax B)x— 9.

function and decision function P(yi | e, g x)=veifgof(e)#y
| Label for Chipping Sparrow

Chipping Sparrow

Learner’s progress measured by the expected classification error E[err(h) | S] = 2nP(h | S) err(h)

Existing Work Our goal is to find the optimal teaching set achieving expected error € : 8* = argmin |S|, s.t. Elerr(h) | es,ys] < €
SC{1,...,m}

Label-based Machine Teaching

[Goldman & Kearns 1995; Zhu 2013; Singla et al. 2014; Johns et al. 2015; Chen et al. 2016; Liu et al. 2017 ...] The NOTES A|gorithm
Quantifying uncertainty
For each pair of attention/decision functions, we define edge weight -
D initial error induced by error induced by
. edge weight following attention f  making decision g
— Label only based approaches may perform badly if | l }
@ @ /)

hypotheses are highly structured v i v .
w({f,g}) =P(f) - P(g) - (err(g” o f) +err(g o f7))
Bipartite graph constructed by NOTES.

w{f,g} | S) =w{f,g}) P(ei,vi | f,9) Size of nodes represents prior prob.
Our ApproaCh + 71;[8 Edges are drawn between f* (resp. g") and all g's (resp. all f's).

Explanation-based Machine Teaching edge weight after observing 5

Surrogate objective function: Near-Optimal Teaching via Explanatory Sets (NOTES)

:Baird Sparrow: :Chipping Sparrow: :Chipping Sparrow: :Baird Sparrow:

remaining weight of the bipartite graph upon o
observing set S: input Teaching image set {(x, y, €)}im: hyp. {h(x):=g ° f(x)};
noise params {vf, v&};.m prior P(f), P(g); tolerance €
r(8) = Z w({fg}15) Output Selected images to teach, S
{f.g}e€
D Start S« o
_ _ . k Thm The worst-case cost of NOTES achieving error Loop i*= in; (S U {M):
-1 Interpretable Machine Teaching with Explanatory Instructions € is within a logarithmic factor of the worst- P! ‘_argmln. .r( i
case cost of the optimal algorithm achieving S s udil
Student's ability to learn a new concept can be greatly improved by providing error of at least P(f")P(g")e/2 Until r(S) < P(f)P(g") €
them with clear and interpretable explanations from a knowledgeable teacher
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Experimental Results

Datasets Explaining Teaching Examples Results
Jupiter vs Mars LIME Explainer (Ribeiro et al., 2016) simulated and real-human learners
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