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Abstract— We propose a novel approach for trip prediction
by analyzing user’s trip histories. We augment users’ (self-)
trip histories by adding “similar” trips from other users, which
could be informative and useful for predicting future trips for
a given user. This also helps to cope with noisy or sparse trip
histories, where the self-history by itself does not provide a
reliable prediction of future trips. We show empirical evidence
that by enriching the users’ trip histories with additional trips,
one can improve the prediction error by 15%∼40%, evaluated
on multiple subsets of the Nancy2012 dataset. This real-world
dataset is collected from public transportation ticket validations
in the city of Nancy, France. Our prediction tool is a central
component of a trip simulator system designed to analyze the
functionality of public transportation in the city of Nancy.

I. INTRODUCTION AND BACKGROUND

This paper is concerned with prediction of future trips
according to trip histories. Trip prediction is used, for exam-
ple, to simulate a public transportation system, to analyze the
traffic, to investigate the demand and load, and to identify
the bottlenecks and the constraints. In principle, a universal
trip planner can be used to predict a trip for a user, by
sampling from the predictive distribution of future trips,
marginalized over the entire population. Such trips usually
reflect the general traveling pattern of all the users in the
system, and are useful for estimating the overall statistics of
a transportation system. However, passengers do not always
travel according to what a trip planner offers to them, due to
the fact that they have different trip preferences and therefore
behave differently according to various criteria. Thereby,
looking at individual historical trips can provide very useful
information about trip habits and behavior of them, and
hence is helpful for making personalized recommendations.

a) Personalized trip prediction: A partially related task
to trip prediction is trip recommendation, where a recom-
mendation system deals with the choice of the routes to be
taken by the user. A trip predictor, on the other hand, aims
at predicting the trip that user u will take at time t (i.e.
to estimate the origin and the destination). Training a trip
prediction model at individual level is essential for building
trip planner systems. This is due to the fact that personalized
trip planner [25], [30], [31], [12], [13], [4] recommends
future trips for a given user, by sampling from the predictive
distribution. The sampling is conditioning on the query and
the historical behaviors of the user (i.e., target ∼ Pr(trip |
query, history)). The query (e.g., “what’s the most popular
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trip on Monday afternoon”, “best route to work in two
hours”) is universal for all users, whereas the history usually
consists of user’s profiles [28], real-time trip information
(e.g., traffic [25] and real-time location [31]), community-
contributed meta-data (e.g., geo-tags [23] and photos [26],
etc), previously realized trips (e.g., trips realized in a different
city [14], [26]) and so on, which encodes user’s bias /
preference towards specific trips. Such information is crucial
in steering the trip recommender towards making suggestions
that are meaningful to the user, as well as predicting future
trips. For example, students who travel to schools often take
trips with the shortest travel time; while parents who pick up
their children at school may very likely choose a different
route, so that they can drop by local shops and do grocery
shopping on the way. If we observe a direct trip from location
A (e.g., home) to B (e.g., school) frequently enough in the
travel history of a given user, it is very likely for the same
user to take this trip under similar conditions, as we may
guess she is a user of some fixed type (e.g., “students”).
With sufficient amount of historical data from each user,
learning their attributes (i.e., latent variables) [10], [4] from
trip histories is helpful for us to train a good trip predictor. In
this way, it helps to group users of common interest, which
in turn regularizes the model to make meaningful predictions
[17].

One particular challenge for trip prediction is the “cold-
start” problem: we may want to predict the behavior of very
recent or newly-joined users, who do not yet have a long
travel history in the system. It is challenging to represent
such users (i.e., finding expressive representation in vector
space) purely based on histories of their own, since there
is not sufficient knowledge about them. As an example, the
user in second line of Figure 1 has a rather short trip history,
and the single trip it takes on week 9 only contains limited
information about the user’s behavior. In such scenarios,
one often needs to trade exploration (i.e., collecting more
information about the user) and exploitation (i.e., making
prediction from the realized trips).1 However, in this work we
focus on exploitation of information which is already known
and present, and we target at maximizing the relevance of
the current predictions. We hope to develop an intelligent trip
prediction system that is capable of decoding users’ travel
patterns from historical travel data, even when the trip history
is not statistically rich enough.

b) Similarity-based approach: A natural way to ad-
dress such “cold-start” problem is to enrich users’ trip

1One common setting to study this problem is online learning, where one
seeks to iteratively predict trips for a given user and explore new knowledge,
aiming to maximize the cumulative relevance of the entire set [1], [2], [3].



Week 1 Week 2 Week 3 … Week 10

?…

Week 9

?

?

Week 8

…

…

Fig. 1: Illustration of trips taken by users at some fixed time slots. We can see the histories of trips taken by three different
users, one for each line, on the same time slots (say, from 8am to 9am on Mondays) over 9 weeks. The line segments inside
the rectangles represent trajectories of the trips; the turning points represent public transport transit stops. A trip predictor
aims to predict the trips for each of the users at some given time slot, e.g., from 8am to 9am, on Monday of week 10.

history by looking into historical trips of “similar” users.
Similarity-based approach has been popular as an alternative
to traditional feature-based learning for numerous machine
learning tasks, especially when it is challenging to find
satisfactory (vectorial representation of) features for learning
purposes [32]. A commonly used approach to similarity-
based classification is k-nearest-neighbors (k-NN). Nearest-
neighbor learning is the algorithmic analogue of the exemplar
model of human learning [18]. Although simple, it is often
effective in practice, and empirical studies on a number of
benchmark data sets show that it is difficult to surpass the
performance of k-NN for similarity data [29].

We build upon and extend the nearest-neighbor paradigm
to personalized trip prediction problem. One fundamental
problem we face is to develop a proper similarity mea-
surement between different users. Optimizing the similarity
measure has been extensively studied in both supervised
learning and unsupervised learning setting. Under the super-
vised learning setting, where target trips are known, one can
optimize the similarity measure via metric learning [33]. In
unsupervised learning setting, one can regularize the models
via, e.g., non-negative matrix factorization [24], [19]. In
both settings, however, the goal is to learn a similarity /
distance measurement that leads to optimal clustering, rather
than finding the most useful users which incur the minimal
prediction error. In contrast, we take a direct approach, where
we directly relate the similarity between two users with the
performance w.r.t. the prediction error. We argue that our
work is orthogonal to existing methods that learn feature
representations, and we can always learn better features via
these methods as pre-processing steps for our approach.

One work is relevant to [22], where the goal is to find
clusters of users to minimize the prediction error. In [22]
the authors make a direct connection between user groups
and prediction error: a user is assigned to a group as
long as it helps reducing prediction error, and the micro-
segmentation of user groups are used collectively for targeted
and personalized prediction. Despite of that, we do not
require partitioning the users into groups; instead, we allow

the similarity measure to be asymmetric, where neighbors
(i.e., similar users) of a given user do not necessarily have
that user as a neighbor. Such relaxation provides us with
flexibility of creating arbitrary groups that could help with
reducing the expected prediction error.

c) Our contribution: To sum up, our contributions
include the following aspects:
1. We develop a general framework for trip prediction, which
predicts future trips for given users by incorporating their
historical trip choices. Unlike existing works [25], [31], [23],
[26] which exploit only the user-specific information, we
focus on developing a framework on top of such systems,
which aims at improving the performance (i.e., prediction
error) of such systems by leveraging historical trips of similar
users, where our similarity measurement by definition is
related to the reduction in prediction error in a separate
validation set.
2. We demonstrate the effectiveness of our method on
multiple subsets of the Nancy2012 public transportation
dataset, and show that by enriching the users’ trip histories
with additional trips, one can improve the performance of
trip predictor by 15%∼40% in terms of prediction error. An
important aspect of our study is that the dataset is real-world,
i.e., it is collected from real (electronic) trip transactions
of the passengers in the city of Nancy, France, during the
year 2012. By predicting the trips at an individual level,
our prediction tool constitutes an important component of
a trip simulator system, which is designed and implemented
to analyze the functionality of public transportation and the
behavior of users in the city of Nancy. For instance, the
trip simulator might query the future trips of all users in
the system at a specific time.2 This leads to computing
sufficient statistics of the overall traffic of the city, as well
as zone specific traffic, by aggregating individual predicted
trips. Such information can be used, for example, to detect
the bottleneck of the system, decide whether bus stops should

2This information can be obtained at different time points which can help
to for example understand the dynamics of traffic and the functionality of
transportation system [5], [27].



be added / placed, and support strategic decision making
(e.g., to build new transportation system).
3. We discuss the possibility that further improvements in
performance can be attained by (1) leveraging new, informa-
tive and fine-grade features and (2) transferring existing fea-
tures into more robust representations via e.g. non-negative
matrix factorization.

II. NEIGHBOR-BASED TRIP PREDICTION

Our goal is to develop an effective approach for trip
prediction based on trip histories. Formally, we define a trip
to be a tuple (o, d, v), where o denotes the (location of the)
origin, d denotes the destination, and v denotes the list of
transit stops (or via-points). Similarly, we use (o, d, v)u,t to
denote a trip taken by user u at t, where t denotes the time
of the trip3. Individual users’ trip histories might be sparse or
noisy, thus, they might not be sufficient to provide a suitable
feature representation for predicting future trips. Therefore,
we need to augment the individual users’ self trip histories by
trip histories of other users in order to compute a more robust
estimation. However, taking all other user trip histories into
account, i.e. averaging over all trips, is not appropriate, since
different people might have different trip preferences and
thus global averaging discards such a diversity. Therefore,
for each user, we need to identify an additional set of trips
histories (i.e. neighbors) than the self history which help
to improve future trip prediction. To do so, we take two
important considerations into account:
I) The users usually make a diverse set of trips during a
day. Therefore, it makes sense to divide a day into small
(e.g., one-hour) time intervals and consider the trips inside
this interval as unit of trip behavior. On the other hand, the
trip behavior of user u at time t might be similar to the trip
behavior of user u′ at a different time t′ such that t and t′

does not necessary overlap. For example, user u might travel
to the city university at time 9am, whereas user u′ might
take this trip at time 3:00 pm. Therefore, when querying a
trip as well as finding appropriate auxiliary trip histories,
we parametrize the operations by time point t. Formally,
we define the base entities that we work with as user-time
pairs, i.e., e := 〈u, t〉. We use Tut to refer to the set of trips
associated entity 〈u, t〉:

Tut = {(o, d, v)u′,t′ : u
′ = u ∧ t′ = t}

Then, the question is: for a specific entity 〈u, t〉 which
represents user u at time t, what are the other entities that
can be used to obtain a better prediction for the next trip of
the user, at time t in future days/weeks?
II) The usefulness relations are not symmetric, i.e. entity
〈u′, t′〉 may be helpful for entity 〈u, t〉 to find a better trip
in future, however, 〈u′, t′〉 might not need 〈u, t〉 for this

3For public transportation, we use t to denote the time in the week,
e.g., 8am-9am on Monday, since the trips are often repetitive over different
weeks. We use o, d to denote locations of the origin and destination stops;
this allows us to compute distances between two trips efficiently, and hence
we don’t need to further discretize the space (e.g., using close-by bus stops
or city areas) as is done in [27] (such quasi-discretization may lead to less
accurate prediction in addition to extra computation time).
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Fig. 2: Computing neighboring entities of 〈u, t〉: we divide
the dataset into training and validation set, each containing
a fraction of trips for each entity.

purpose. In particular, such a directional relation can hold
whenever the trip history of 〈u′, t′〉 is clean and long enough,
but 〈u, t〉 is very short or noisy. Thus, the methods that work
based on grouping or clustering of entities discard this kind
of asymmetric relations.

Thereby, we propose a method to compute additional
helpful entities to each specific entity. However, we do not
have access to the user profile, such as meta-data description
of the users’ occupation, hobbies, and age group, etc. Instead,
we are only given the users’ trip histories, based on which
we should define a proper time-dependent distance/similarity
measure between them. In absence of meta-data feature
representation, we follow a similarity-based approach, while
relying on the fundamental principle of learning theory: a
good model should perform well on unseen data from the
same source.

For a given entity 〈u, t〉, we determine its neighbors in a
non-parametric way using a separate unseen dataset called
validation set. More formally, let us start with the simple
case, where we are given a dataset of trip entities with equal
trip histories L, i.e., D = {〈u, t〉 : |Tu,t| = L}. We then
divide the whole dataset into two subsets, training set and
validation set, each containing L/2 trips per entity. Then, we
use the validation set to identify the appropriate neighbors of
the entities. For each 〈u, t〉 in the training set (resp. validation
set), we denote the associated set of trips by T trn

ut (resp.
T vld
ut ). See Figure 2 for illustration. In case of not availability

of enough annotated data, active learning methods can be
employed to provide annotated data in a cost-efficient way
[15], [21].

To compute the appropriate neighbors of the entity 〈u, t〉,
we investigate which of the training histories are at least
equally similar to the validation history compared with the
self training history, i.e.,

Nut =
{
〈u′, t′〉 : dist(T trn

u′t′ , T
vld
ut ) ≤ dist(T trn

ut , T vld
ut )

}
(1)

where dist(., .) denotes the distance between trip histories.
In our study, we investigate two options for dist(., .):

1) ordered, where only the trips at the same positions are
compared, i.e.,

dist(p, q) =
2

L

∑
1≤i≤L/2

seuc(pi, qi) , (2)



Algorithm 1 History-based trip prediction.

Require: The entities and the respective trips.
Ensure: Predicted trip(s) to each entity.

1: for each entity 〈u, t〉 do
2: Split the trip histories into T trn

ut and T vld
ut for con-

struction of the training and validation sets.
3: end for
4: for each entity 〈u, t〉 do
5: Nut = {〈u′, t′〉 : dist(T trn

u′t′ , T
vld
ut ) ≤

dist(T trn
ut , T vld

ut )} .
6: rut ∈ argmaxx∈T (Nut)

∑
y∈T (Nut)

fx sim(x, y) .
7: end for
8: return {rut}

Hereby, we sort the trips in the trip histories according to
their time of realization, and pi (resp. qi) indicates the ith

trip in trip history p (resp. q). Further, seuc(pi, qi) gives
the squared Euclidean distance between trips pi and qi.
Specifically, for two single-leg trips pi := (o1, d1, v) and
qi := (o2, d2, v) where v = ∅, we have seuc(pi, qi) =
seuc (〈o1, d1, v〉, 〈o2, d2, v〉) = |o1 − o2|2 + |d1 − d2|2.
Note that this variant requires p and q to include the same
number of trips.

2) all2all: where each trip from one trip history is compared
against all trips of the other history, i.e.,

dist(p, q) =
4

L2

∑
1≤i≤L/2

∑
1≤j≤L/2

seuc(pi, qj) . (3)

One advantage of all2all over the ordered variant is that
p and q do not necessarily need to have the same number
of trips. Thus, all2all is more general-purpose and can be
applied to trip histories with different length.

We note that our framework is general enough to use other
distances measures than Euclidean distances as well, e.g. the
Minimax distances [6], [7]. In the next step, we employ the
members of the neighbor set Nut to predict a future trip
for entity 〈u, t〉. For this purpose, we consider the total trip
histories of all neighbors collected in Nut (i.e. including both
training and validations trips) and compute the representative
trip(s) as the trip(s) rut with the minimal average distance (or
maximal average similarity) with other trips. More precisely,

rut ∈ arg max
x∈T (Nut)

∑
y∈T (Nut)

fx · sim(x, y) , (4)

where T (Nut) indicates the set of all trips of all entities
in Nut, and fx denotes the frequency of trip x in this set.
sim(x, y) measures the pairwise similarity between the two
trips x and y, which is obtained by const− seuc(x, y). We
select const as the minimal value for which the pairwise
similarities become nonnegative. Finally, rut is predicted as
the next trip of the user under investigation. Note that rut
might not be deterministic (if there are ties among multiple
trips). Algorithm 1 describes the whole procedure in detail.
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Fig. 3: Estimation error on entities with even L.
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Fig. 4: Estimation error of different experimental settings.

III. EXPERIMENTS

In this section, we conduct extensive empirical evaluation
of our approach on a real-world public transportation man-
agement platform, and demonstrate its superior performance
compared to the alternative baselines (i.e., prediction using
“singleton” entity features, and prediction using the single
nearest neighbor together with self history). In specific, we
show that our framework can improve the performance of
existing trip prediction algorithms via our similarity-based
data refinement process. Moreover, we investigate the impact
of transforming the origin and destination features to a new
set of features via non-negative matrix factorization.

A. Experimental Setup

a) Dataset: We perform our experiments on the real-
world trip specification data Nancy2012 collected from the
city of Nancy in France [11], [12]. This data is prepared
from e-card validation collection. We query trip histories
with different lengths, i.e. L = 2, 3, 4, 5, 6, 7, 8, 9, 10, to
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Fig. 5: Estimation error on entities with different lengths of trip history when L is an odd number (i.e., L = 3, 5, 7, 9).

produce different datasets.4 For each L we collect 2, 000
entities from the database, unless there are less entities for a
specific L (For L = 10, we could collect only 740 entities).
We consider single-leg trips in our evaluations.5 Thus, each
trip is specified by four elements: the longitude and the
latitude of the origin and the longitude and the latitude of
the destination.

We split each dataset into training and validation sets.
Moreover, we have an additional trip (test trip) for each entity
which will be used as the ground truth (i.e. T tst

ut ) in order to
investigate the correctness of our estimation/prediction.

b) Evaluation criteria: We compare the ground-truth
and the predicted trips and compute the mean squared error

ˆerr =
1

|{〈u, t〉}|
∑
〈u,t〉

seuc(rut, T tst
ut ) , (5)

where |{〈u, t〉}| shows the number of test cases (entities).

B. Numerical Analysis

a) Results with different trip history lengths: Fig-
ures 3, 4 and 5 illustrate the estimation error of computing
the neighbors respectively for L = 2, 4, 6, 8, 10 (i.e. when
L is an even number) and L = 3, 5, 7, 9 (i.e. when L is an
odd number). The neighbors are sorted according to their
usefulness on validation set (i.e., their distance to the entity
of interest, as defined in Equation (2) and Equation (3)). We
investigate different number of neighbors per user, where
no. of neighbors= 0, indicating the use of only self history
for computing representative trip and prediction. Thus, this
setting constitutes our baseline. Another baseline is to use the
single nearest neighbor with self history. In Figure 4(a) and
Figure 4(b), we plot the prediction error using self-history
only, nearest-neighbor, and the optimal set of neighbors,
respectively, for the two options of distance function. We
observe, i) except for L = 2, our approach always leads to
reducing the estimation error. For L = 2, there is only one
trip for training and one for validation. Thus, due to noise
and sparsity, we are not able to select informative and reliable
neighbors. However, once we increase the number of trips
for training and validation sets, e.g. L = 3, 4, 5, 6, 7, 8, 9, 10,
then, our approach yields computing better neighbors and a

4Note that the ordered variant requires that the two trip histories (training
and validation sets) must be aligned, i.e. they should have the same lengths.
Thus, we perform L = 3, 5, 7, 9 only for all2all variant.

5Note that over 95% of the trips in our dataset are single leg.

better representative trip among them, which thereby leads
to reduce the estimation error by 15%∼40%. ii) As we
increase the number of trips in history, i.e. the L, then
we can better compute the neighbors and obtain a more
reliable representative trip. Thus, a larger L yields better
performance in trip prediction, as well as the results are
smoother. iii) The results are very much consistent between
all2all and ordered variants, which also indicates lack of any
significant temporal trip behavior. However, the advantage of
the all2all variant is that it can be employed even when there
are entities with varying number of trips. Thus, the all2all
variant can replace whenever the ordered variant is desired.
Moreover, all2all in general outperforms ordered, if we are
allowed to include a fixed number of neighbors for each
entity. Such observation suggest that we should consider to
use all2all whenever possible as the more reliable similarity
measurement. We note that in the case of superiority of the
ordered variant, methods such as recurrent neural networks
could be employed to better extract the temporal aspects of
driving/transport trajectories [16], [20].

b) Pre-processing trips via non-negative matrix factor-
ization: We then investigate that how the use of matrix
factorization methods affects the prediction accuracy. In par-
ticular, we perform non-negative matrix factorization on the
feature matrices, in order to transform the original features
into another type of features which might be more suitable.
This technique is very common in recommendations and col-
laborative filtering. We repeat the experiments for different
number of hidden components and choose the best results.
In our experiments, the optimal number of components is 4.
The results are shown in Figure 6 for L = 6 and L = 8. For
the other values of L, we observe very consistent results.
We observe that transforming the original features into the
new features leads to a significant increase in the prediction
error. This observation implies that the original features are
sufficient and informative enough to be used for the purpose
of learning and prediction. Intuitively, this makes sense,
because the original features are orthogonal (non-redundant)
and sufficiently describe the origin and destination points.

c) Enriching short-history entities with longer history
neighbors: In the following, we investigate whether aug-
menting short histories with long histories can help to predict
more accurate trips. In particular, we study the case of
L = 2, i.e. the only case where our approach fails to improve
prediction accuracy. We choose different number of entities
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Fig. 8: Estimation error when entities with different number
of trips are combined.

with L = 2 (e.g. 100, 500, 1000 and 2000) and combine
them with 2000 entities whose L is 8. That is, we merge the
training set (resp. validation set) of trips with L = 8 with
training set (resp. validation set) of trips with L = 2. Figure 7
illustrates the results. We compute the estimation error only
for the entities with L = 2. We observe that, i) the impact
of very short histories (i.e. L = 2) is very crucial, such
that even augmenting them by very long histories dose not
help much. We still see that using only the self-histories is a
better choice for this particular case. ii) As we increase the
ratio of the number of long histories to the number of short
histories, then we obtain better and more reliable neighbors

such the estimation error decreases. We particularly observe
this behavior when the number of entities changes from 2000
to 1000, 500 and finally to 100.

d) Combining entities with different number of trips:
Finally, we consider combination of entities with different
number of trips, i.e. with varying L. In the first case (Fig-
ure 8(a)) we combine entities with L = 3, 4, 5, 6 trips, where
the dataset contains 500 entities from each category. In the
second case (Figure 8(b)), we consider L = 7, 8, 9, 10, and
collect 500 entities from each category. For this setting, we
employ all2all measure for computing appropriate neighbors,
since the entities have different number of trips. Figure 8
illustrates the results. We observe, i) in both cases, our
method helps to compute appropriate neighbors and thereby
to reduce the estimation error. ii) For the second case, i.e.
when L = 7, 8, 9, 10, the estimation error is smaller (and
smoother) than the first case. The reason is that in the second
case the trip histories are longer, thus the representative trip
can be computed in a more robust way.

IV. DISCUSSION AND FUTURE WORK

In this section, we discuss some potential directions on
improving the prediction accuracy. One defining factor for
performance is the trips’ initial feature representations. As
previously discussed, the performance of the predictor relies
on our definition of the distance function dist(., .), which
currently is defined as a function of the (pairwise-) squared
Euclidean distances between trips. However, the geographi-
cal information about a trip is more than just the origin and
destination stop. As demonstrated in Figure 9, straight line
distance between (O,D) pairs hardly reflects the scales of
the difference between different trips. In Figure 9(b), Trip B
and Trip C represent the same service line in different hours
of the day. They are almost identical except for the last stop.
Trip A and Trip B (or C) are very different, though they
still share a common stop which could be a popular transit
stop for 2-leg trips (i.e., some users travel on Trip A may
transfer to B (or C) at the intersecting point). To capture such
potentially useful information, we propose a new distance
measure between trips, tripd(., .), defined as follows:

tripd(pi, qi) =
(
1− pi ∩ qi

pi ∪ qi

)
∗ seuc(pi, qi) (6)

where the first term on the R.H.S. represents the Jaccard
distance between trip pi and qi if we view them as sets
of intermediate stops. This heuristic captures the intuition
that if two trips share many common stops, even though the
ending stops are far apart, we may still want to treat them
as “somewhat similar” since they can belong to different
segments of the same service line, or the two trips can be
potential transfer trips for each other.

Since our method for proposing neighbors is orthogonal
to the feature extraction/engineering component, we may
preprocess the current features by transferring them into
more robust, noise-resilient features, via commonly used
techniques such as non-negative matrix factorization or trun-
cated SVD. This black-box feature engineering component



(a) Public transportation routes

Trip C

Trip B

Trip A

(b) Example trips

Fig. 9: Routes and Stops in Nancy2012.

might be particularly helpful when we use more complicated
type of features or a combination of different criteria. An-
other choice would be minimax distance which computes the
transitive relations and elongated patterns in a nonparametric
way [9], [8].

V. CONCLUSION

We propose a new method for trip prediction by taking
into account the user trip history. We augment users trip
history with trips taken by similar users, where the similarity
between users are directly guided by the prediction error. We
show that by incorporating the augmented trip history, one
can improve the informativeness of users’ self histories, and
hence improve the overall performance of the trip prediction
system. We perform experiments on a real-world dataset
collected from real trip transactions of the passengers in the
city of Nancy in France.
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[2] Niklas Åkerblom, Yuxin Chen, and Morteza Haghir Chehreghani.
Online learning of energy consumption for navigation of electric
vehicles. CoRR, abs/2111.02314, 2021.

[3] Niklas Åkerblom, Fazeleh Sadat Hoseini, and Morteza Haghir
Chehreghani. Online learning of network bottlenecks via minimax
paths. Machine Learning, 2022.

[4] Theo A Arentze. Adaptive personalized travel information systems:
a bayesian method to learn users’ personal preferences in multimodal
transport networks. IEEE Transactions on intelligent transportation
systems, 14(4):1957–1966, 2013.

[5] Oded Cats. Dynamic modelling of transit operations and passenger
decisions. 2011.

[6] Morteza Haghir Chehreghani. K-nearest neighbor search and outlier
detection via minimax distances. In Proceedings of the 2016 SIAM
International Conference on Data Mining, pages 405–413, 2016.

[7] Morteza Haghir Chehreghani. Classification with minimax distance
measures. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAI), pages 1784–1790, 2017.

[8] Morteza Haghir Chehreghani. Feature-oriented analysis of user profile
completion problem. In 39th European Conference on Information
Retrieval (ECIR), volume 10193, pages 304–316, 2017.

[9] Morteza Haghir Chehreghani. Unsupervised representation learning
with minimax distance measures. Machine Learning, 109(11):2063–
2097, 2020.

[10] An-Jung Cheng, Yan-Ying Chen, Yen-Ta Huang, Winston H. Hsu,
and Hong-Yuan Mark Liao. Personalized travel recommendation by
mining people attributes from community-contributed photos. In ACM
Multimedia, pages 83–92, 2011.

[11] Boris Chidlovskii. A method for estimating dynamic origin-destination
matrices from the atv data. Technical report, XRCE, no. 2012158,
2012.

[12] Boris Chidlovskii. Improved trip planning by learning from travelers’
choices. In ICML workshop on Mining Urban Data, pages 17–26,
2015.

[13] Caspar G. Chorus, Eric J. E. Molin, and Bert Van Wee. Use and
effects of advanced traveller information services (atis): A review of
the literature. Transport Reviews, 26(2):127–149, 2006.

[14] Maarten Clements, Pavel Serdyukov, Arjen P de Vries, and Marcel JT
Reinders. Personalised travel recommendation based on location co-
occurrence. arXiv preprint arXiv:1106.5213, 2011.

[15] Federica Comuni, Christopher Mészáros, Niklas Åkerblom, and
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