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Problem Setting
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How to learn a deep surrogate model for one-round data

acquisition in active learning?
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arg max
SoCS I CX,|S\So|=B

e A labeling function f to project input X to a groundtruth label set )/

» Given labeled Set Sy with Sy C X and |Sy| = k, find the optimal set S with k + B size that would
achieve maximal validation set accuracy in one round.

o A groundtruth utility function mapping
uw:2¥ 5 R
where u(&) quantifies the utility of a subset £ C X

 Learn the utility function @ by ranking and optimal transport distance between labeled set and
validation set.

« First Stage: Learning the utility function.
 Second Stage: Greedily follow the learned utility function with predicted maximal utility.

Collect utility samples to train ranking function with

Optimal Transport distance as a regularizer with bilevel training.
| |

Utility Model Learning

Definition 1. /Surrogate Utility Model] Let X be the instance
domain, and & be any sampled subset drawn from distribution
D over X. A surrogate utility model 4(€) is a set function.:

2%V — R, optimized to predict the true utility u(§) on a training

Ranking loss:
set & ~ D:

@ = arg min B p[L(T,(&), u(€)]

g
where L(-,-) denotes the loss function, and ., is a parametric
set function to approximate u.
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Experimental Results

Loss function over a pair of utility samples &1, &o:
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Multi-task Learning

ﬁTotal — LRank + )\OTLOT

Optimal Transport (OT) distance regulatory loss:
Lor(&r, &) = M(OTy — OT))? + M(OT5 — OTy)? — \y(min(OT7, 0) 4+ min(OT, 0))

Longer length Utility Samples as training samples for outer opti-

mization tasks

Shorter length Utility Samples as training samples for inner opti-

min

A

mization tasks
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Figure 1: Overview of the RAMBO Algorithm (Ranking-based Active learning via Multitask Bilevel Optimization)

Bilevel Training
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Ablation Study

Bilevel Optimal Transport RankNet
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Ablation study on three submodules with acquisition budget B = 5000, and pretraining set & = 200 for FashionMNIST (left) and &£ = 3500
for CIFAR10 (right). The last row corresponds to the random baseline.

Sensitivity Analysis
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Figure 2: Accuracy vs. Labeling budget. Results are given in % for (from left to right) FashionMNIST, MNIST, CIFAR10, and SVHN.
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Figure 3: Different choices of Ao for pretraining set size k = 200 for FashionMNIST, MNIST, CIFAR10 and SVHN by different acquisition budget.



