Learning to Rank for Active Learning via Multi-Task Bilevel Optimization Zixin Ding¹, Si Chen², Ruoxi Jia², Yuxin Chen¹ ¹University of Chicago, ²Virginia Tech #### Problem Setting $$\mathcal{S}_1^* \in \underset{\mathcal{S}_0 \subseteq \mathcal{S}_1 \subseteq \mathcal{X}, |\mathcal{S}_1 \setminus \mathcal{S}_0| = B}{\operatorname{arg max}} u(\mathcal{S}_1)$$ - A labeling function f to project input $\mathcal X$ to a groundtruth label set $\mathcal Y$ - Given labeled Set S_0 with $S_0 \subseteq \mathcal{X}$ and $|S_0| = k$, find the optimal set S_1 with k + B size that would achieve maximal validation set accuracy in one round. - A groundtruth utility function mapping $$u: 2^{\mathcal{X}} \to \mathbb{R}$$ where $u(\xi)$ quantifies the utility of a subset $\xi \subseteq \mathcal{X}$ - Learn the utility function \hat{u} by ranking and optimal transport distance between labeled set and validation set. - First Stage: Learning the utility function. - Second Stage: Greedily follow the learned utility function with predicted maximal utility. Collect utility samples to train ranking function with Optimal Transport distance as a regularizer with bilevel training. ### How to learn a deep surrogate model for one-round data acquisition in active learning? Figure 1: Overview of the **RAMBO** Algorithm (**R**anking-based **A**ctive learning via **M**ultitask **B**ilevel **O**ptimization) ## Utility Model Learning **Definition 1.** [Surrogate Utility Model] Let \mathcal{X} be the instance domain, and ξ be any sampled subset drawn from distribution \mathcal{D} over \mathcal{X} . A surrogate utility model $\hat{u}(\xi)$ is a set function: $2^{\mathcal{X}} \to \mathbb{R}$, optimized to predict the true utility $u(\xi)$ on a training set $\xi \sim \mathcal{D}$: $$\hat{u} = \arg\min \hat{\mathbb{E}}_{\xi \sim \mathcal{D}}[\mathcal{L}(\tilde{u}_w(\xi), u(\xi))]$$ where $\mathcal{L}(\cdot,\cdot)$ denotes the loss function, and \tilde{u}_w is a parametric set function to approximate u. ## Multi-task Learning Loss function over a pair of utility samples ξ_1, ξ_2 : $$\mathcal{L}_{Total} = L_{Rank} + \lambda_{OT} L_{OT}$$ Ranking loss: $$\mathcal{L}_{\text{Rank}}(\xi_1, \xi_2) = -\bar{P}_{12} \log P_{12} - (1 - \bar{P}_{12}) \log(1 - P_{12}).$$ Optimal Transport (OT) distance regulatory loss: $$\mathcal{L}_{\text{OT}}(\xi_1, \xi_2) = \lambda_1 (\hat{OT}_1 - OT_1)^2 + \lambda_2 (\hat{OT}_2 - OT_2)^2 - \lambda_3 (\min(\hat{OT}_1, 0) + \min(\hat{OT}_2, 0))$$ ## Bilevel Training Longer length Utility Samples as training samples for outer optimization tasks $$\min_{\lambda} E(w(\lambda), \lambda)$$ s.t. $w(\lambda) = \arg\min_{\hat{w} \in \mathbb{R}^d} \mathcal{L}(\hat{w})$ Shorter length Utility Samples as training samples for inner optimization tasks $$\mathcal{L}(\hat{w}) = \sum_{\{(S_1', u(S_1')), (S_2', u(S_2'))\} \in D_{tr}} \mathcal{L}_{\text{Total}}(\hat{w}) + \Omega_{\lambda}(\hat{w})$$ ### Ablation Study | Bilevel Optimal Transport RankNet Accuracy | | | | Bilevel Optimal Transport RankNet Accuracy | | | | |--|--------------|--------------|----------------|--|--------------|--------------|---------------------------| | \checkmark | √ | √ | 83.1 ± 0.1 | \checkmark | √ | √ | $\overline{77.3 \pm 0.2}$ | | \checkmark | \checkmark | × | 81.9 ± 0.2 | \checkmark | \checkmark | × | 76.1 ± 0.3 | | \checkmark | × | \checkmark | 81.2 ± 0.4 | \checkmark | × | \checkmark | 76.2 ± 0.4 | | \checkmark | × | × | 81.8 ± 0.2 | \checkmark | × | × | 70.5 ± 0.3 | | × | \checkmark | \checkmark | 81.0 ± 0.3 | × | \checkmark | \checkmark | 75.5 ± 0.3 | | × | \checkmark | × | 81.7 ± 0.2 | × | \checkmark | × | 75.5 ± 0.3 | | × | × | \checkmark | 80.9 ± 0.3 | × | × | \checkmark | 76.0 ± 0.8 | | × | × | × | 81.6 ± 0.1 | × | × | × | 74.6 ± 0.7 | | _ | - | _ | 81.2 ± 0.2 | _ | - | _ | 74.7 ± 0.3 | Ablation study on three submodules with acquisition budget B = 5000, and pretraining set k = 200 for FashionMNIST (left) and k = 3500for CIFAR10 (right). The last row corresponds to the random baseline. ## Experimental Results #### Figure 2: Accuracy vs. Labeling budget. Results are given in % for (from left to right) FashionMNIST, MNIST, CIFAR10, and SVHN. ## Sensitivity Analysis Figure 3: Different choices of λ_{OT} for pretraining set size k=200 for FashionMNIST, MNIST, CIFAR10 and SVHN by different acquisition budget.