Learning to Rank for Active Learning via Multi-Task Bilevel Optimization

Zixin Ding¹, Si Chen², Ruoxi Jia², Yuxin Chen¹ ¹University of Chicago, ²Virginia Tech

Problem Setting

$$\mathcal{S}_1^* \in \underset{\mathcal{S}_0 \subseteq \mathcal{S}_1 \subseteq \mathcal{X}, |\mathcal{S}_1 \setminus \mathcal{S}_0| = B}{\operatorname{arg max}} u(\mathcal{S}_1)$$

- A labeling function f to project input $\mathcal X$ to a groundtruth label set $\mathcal Y$
- Given labeled Set S_0 with $S_0 \subseteq \mathcal{X}$ and $|S_0| = k$, find the optimal set S_1 with k + B size that would achieve maximal validation set accuracy in one round.
- A groundtruth utility function mapping

$$u: 2^{\mathcal{X}} \to \mathbb{R}$$

where $u(\xi)$ quantifies the utility of a subset $\xi \subseteq \mathcal{X}$

- Learn the utility function \hat{u} by ranking and optimal transport distance between labeled set and validation set.
- First Stage: Learning the utility function.
- Second Stage: Greedily follow the learned utility function with predicted maximal utility.

Collect utility samples to train ranking function with Optimal Transport distance as a regularizer with bilevel training.

How to learn a deep surrogate model for one-round data acquisition in active learning?

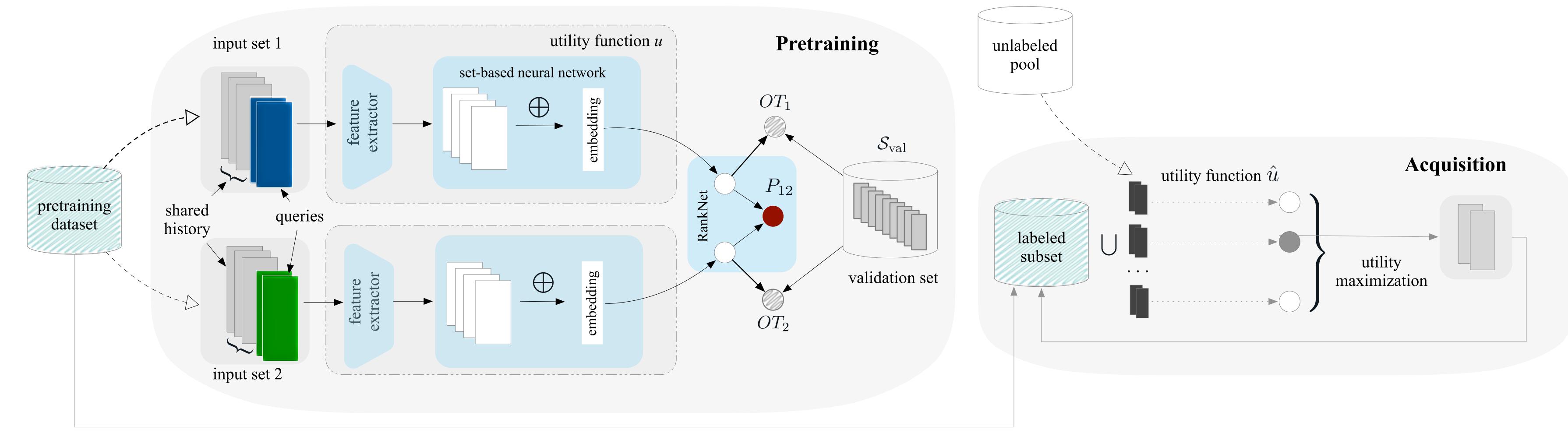


Figure 1: Overview of the **RAMBO** Algorithm (**R**anking-based **A**ctive learning via **M**ultitask **B**ilevel **O**ptimization)

Utility Model Learning

Definition 1. [Surrogate Utility Model] Let \mathcal{X} be the instance domain, and ξ be any sampled subset drawn from distribution \mathcal{D} over \mathcal{X} . A surrogate utility model $\hat{u}(\xi)$ is a set function: $2^{\mathcal{X}} \to \mathbb{R}$, optimized to predict the true utility $u(\xi)$ on a training set $\xi \sim \mathcal{D}$:

$$\hat{u} = \arg\min \hat{\mathbb{E}}_{\xi \sim \mathcal{D}}[\mathcal{L}(\tilde{u}_w(\xi), u(\xi))]$$

where $\mathcal{L}(\cdot,\cdot)$ denotes the loss function, and \tilde{u}_w is a parametric set function to approximate u.

Multi-task Learning

Loss function over a pair of utility samples ξ_1, ξ_2 :

$$\mathcal{L}_{Total} = L_{Rank} + \lambda_{OT} L_{OT}$$

Ranking loss:

$$\mathcal{L}_{\text{Rank}}(\xi_1, \xi_2) = -\bar{P}_{12} \log P_{12} - (1 - \bar{P}_{12}) \log(1 - P_{12}).$$

Optimal Transport (OT) distance regulatory loss:

$$\mathcal{L}_{\text{OT}}(\xi_1, \xi_2) = \lambda_1 (\hat{OT}_1 - OT_1)^2 + \lambda_2 (\hat{OT}_2 - OT_2)^2 - \lambda_3 (\min(\hat{OT}_1, 0) + \min(\hat{OT}_2, 0))$$

Bilevel Training

Longer length Utility Samples as training samples for outer optimization tasks

$$\min_{\lambda} E(w(\lambda), \lambda)$$
 s.t. $w(\lambda) = \arg\min_{\hat{w} \in \mathbb{R}^d} \mathcal{L}(\hat{w})$

Shorter length Utility Samples as training samples for inner optimization tasks

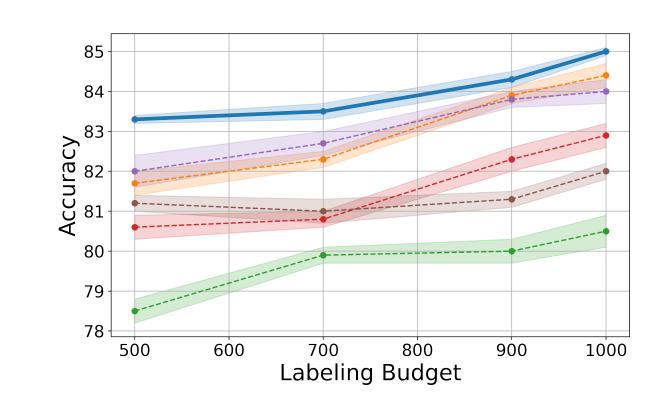
$$\mathcal{L}(\hat{w}) = \sum_{\{(S_1', u(S_1')), (S_2', u(S_2'))\} \in D_{tr}} \mathcal{L}_{\text{Total}}(\hat{w}) + \Omega_{\lambda}(\hat{w})$$

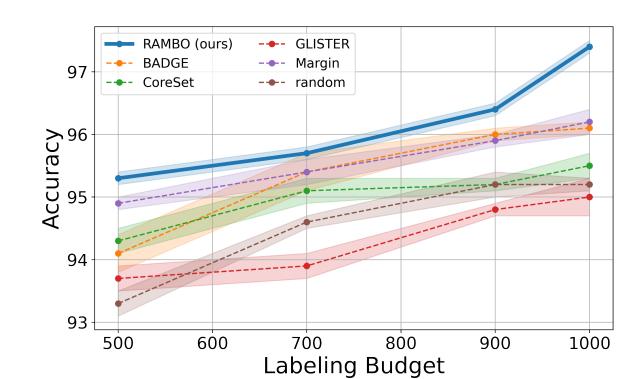
Ablation Study

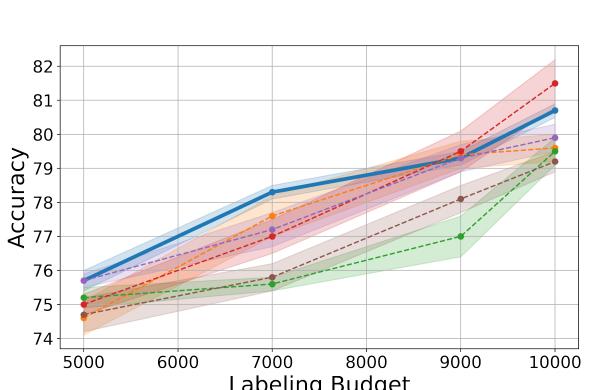
Bilevel Optimal Transport RankNet Accuracy				Bilevel Optimal Transport RankNet Accuracy			
\checkmark	√	√	83.1 ± 0.1	\checkmark	√	√	$\overline{77.3 \pm 0.2}$
\checkmark	\checkmark	×	81.9 ± 0.2	\checkmark	\checkmark	×	76.1 ± 0.3
\checkmark	×	\checkmark	81.2 ± 0.4	\checkmark	×	\checkmark	76.2 ± 0.4
\checkmark	×	×	81.8 ± 0.2	\checkmark	×	×	70.5 ± 0.3
×	\checkmark	\checkmark	81.0 ± 0.3	×	\checkmark	\checkmark	75.5 ± 0.3
×	\checkmark	×	81.7 ± 0.2	×	\checkmark	×	75.5 ± 0.3
×	×	\checkmark	80.9 ± 0.3	×	×	\checkmark	76.0 ± 0.8
×	×	×	81.6 ± 0.1	×	×	×	74.6 ± 0.7
_	-	_	81.2 ± 0.2	_	-	_	74.7 ± 0.3

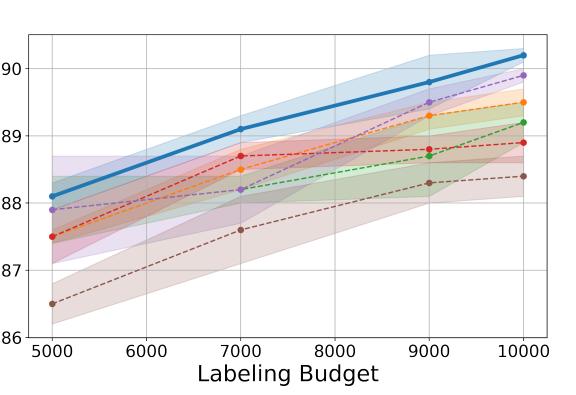
Ablation study on three submodules with acquisition budget B = 5000, and pretraining set k = 200 for FashionMNIST (left) and k = 3500for CIFAR10 (right). The last row corresponds to the random baseline.

Experimental Results









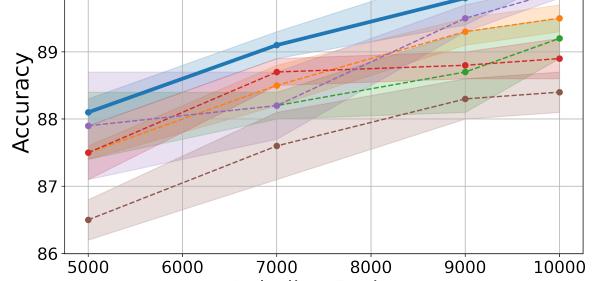


Figure 2: Accuracy vs. Labeling budget. Results are given in % for (from left to right) FashionMNIST, MNIST, CIFAR10, and SVHN.

Sensitivity Analysis

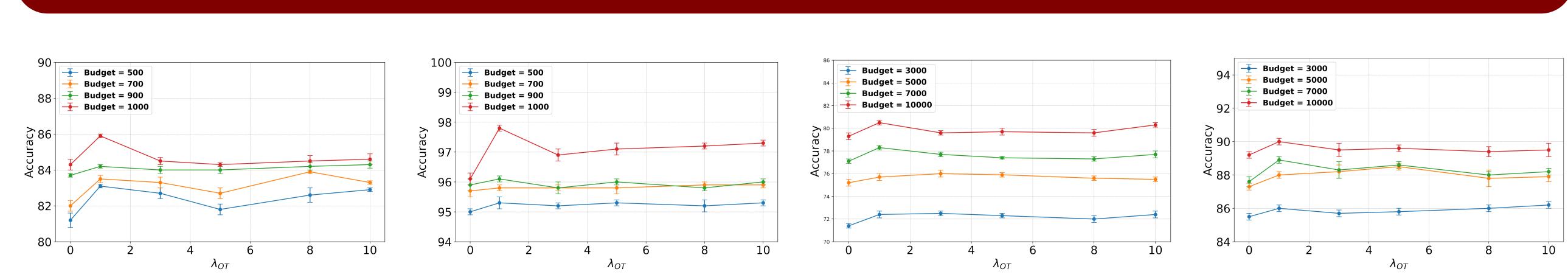


Figure 3: Different choices of λ_{OT} for pretraining set size k=200 for FashionMNIST, MNIST, CIFAR10 and SVHN by different acquisition budget.