Landmark Ordinal Embedding

Nikhil Ghosh[†]

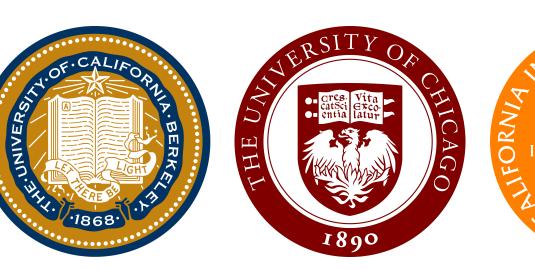
Yuxin Chen[‡]

Yisong Yue*

[†]University of California, Berkeley

[‡]University of Chicago

*California Institute of Technology



Motivation

- Want representations respecting object similarity
- Difficult to obtain quantitative measurements
- Instead use triplet preference feedback from humans

Problem Statement

- Given n objects with unknown embeddings $\mathbf{x}_1^*, \dots, \mathbf{x}_n^* \in \mathbb{R}^d$
- \mathbf{D}^* is the Euclidean Distance Matrix (EDM) i.e. $\mathbf{D}_{ij}^* = \left\|\mathbf{x}_i^* \mathbf{x}_j^*\right\|_2^2$.
- Receive noisy answers to the triplet query "is object j closer to i than k?"
- Given $\langle i, j, k \rangle$ receive "yes" or "no" label where $\mathbb{P}["yes"] = f(\mathbf{D}_{ij}^* \mathbf{D}_{ik}^*)$
- We consider the Bradley-Terry-Luce model: $f(\theta) = \frac{1}{1 + \exp(-\theta)}$
- Goal: using m queries, estimate $\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n$ minimizing Fröbenius norm error

$$\left\|\mathbf{X}^* - \widehat{\mathbf{X}}\right\|_F$$

Primary Related Work

Let \mathcal{T} be the set of triplet queries $\langle i, j, k \rangle$ that received label "yes".

• Stochastic Triplet Embedding (STE) [VDMW12]

$$\max_{X} \sum_{\forall \langle i,j,k \rangle \in \mathcal{T}} f(D_{ij} - D_{ik})$$

• Generalized Non-metric Multidimensional Scaling (GNMDS) [Aga+07]

$$\min_{X,\xi_{ijk} \geqslant 0} \sum_{\forall \langle i,j,k \rangle \in \mathcal{T}} \xi_{ijk} \text{ subject to } D_{ik} - D_{ij} \geqslant 1 - \xi_{ijk}$$

Issues with Existing Approaches

- Existing algorithms require solving expensive optimization problems - (Projected) Gradient Descent algorithms require operations that are take $\Omega(n^2)$ time
- Becomes prohibitively slow when n is large ($\geq 10^4$)
- We would like to compute embeddings for large n

Landmark Multidimensional Scaling [DST04]

Let $\mathcal{L} \subset [n]$ be a set of landmark points. Given distances \mathbf{D}_{ij}^* , $(i,j) \in \mathcal{L} \times [n]$, Landmark Multidimensional Scaling (LMDS) allows us to recover the full embedding X.

Our Contributions

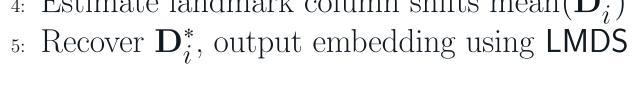
- A fast embedding algorithm, Landmark Ordinal Embedding (LOE), inspired from Landmark Multidimensional Scaling (LMDS).
- A thorough analysis in both sample complexity and computational complexity.
- LOE allows us to warm-start existing state-of-the-art embedding approaches that are statistically more efficient but computationally more expensive.
- By warm-starting with LOE we can find accurate embeddings on massive datasets much more quickly than existing methods.

Landmark Ordinal Embedding

Algorithm Sketch

Input: # of items n; # of landmarks ℓ ; # of samples m; dimension d;

- 1: Randomly select ℓ landmarks from [n]2: Compute rankings R_1, \ldots, R_ℓ of landmark cols.
- 3: Estimate $\ell \times \ell$ landmark submatrix of \mathbf{D}^*
- 4: Estimate landmark column shifts mean (\mathbf{D}_{i}^{*})



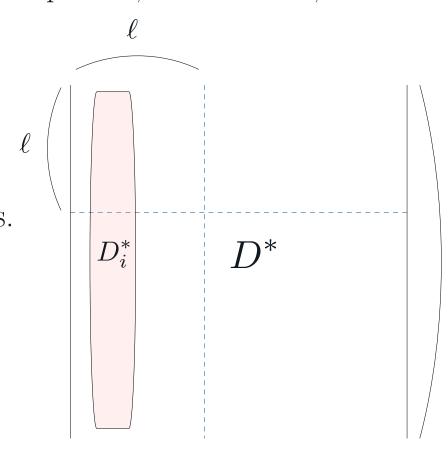


Figure 1: LOE

Key Ideas

- 1. Queries $\langle i, j, k \rangle$ correspond to pairwise comparisons $\langle j, k \rangle$ based on distance from i
- 2. View recovering column \mathbf{D}_{i}^{*} as a ranking problem
- 3. Ranking model is not identifiable, but we can recover $R_i = \mathbf{D}_i^* \text{mean}(\mathbf{D}_i^*) \cdot \mathbf{1}$
- 4. Submatrix of landmarks is a distance matrix, allows identification of mean (\mathbf{D}_{i}^{*})
- 5. LMDS can compute an embedding using only $\ell = O(d)$ columns of \mathbf{D}^*

Theoretical Analysis

Theorem 1 (Consistency) $\Omega(\text{poly}(d)n \log n)$ triplets suffice for LOE to recover the embedding in Fröbenius norm with high probability.

- *Proof sketch*: first bound the propagated error of the landmark columns estimate; combined with a perturbation bound for LMDS to obtain the above result.

Theorem 2 (Computational Complexity) Recovering the embedding up to a fixed error using LOE requires time $O(m + nd^2 + d^3)$ which is linear in n.

Experimental Results

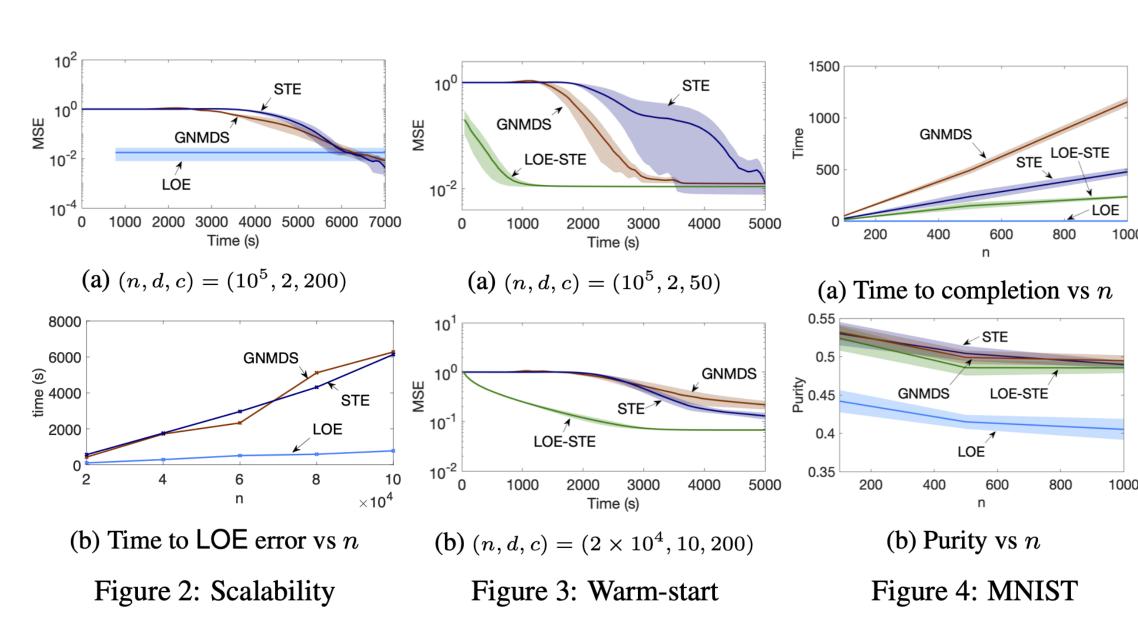
Food Embedding using LOE-STE

- STE. GNMDS: baselines
- LOE: our algorithm
- LOE-STE: using LOE to warm-start STE

Datasets

- Synthetic ($\mathbf{x}_{i}^{*} \sim \text{normal dist.}$)
- MNIST (handwritten digits)
- FOOD (images of food)

We sample a total number of $cn \log n$ triplets per experiment



References

[VDMW12] Laurens Van Der Maaten and Kilian Weinberger. "Stochastic triplet embedding". In: Machine Learning for Signal Processing (MLSP). 2012, pp. 1–6.

[Aga+07] Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David Kriegman, and Serge Belongie. "Generalized non-metric multidimensional scaling". In: AISTATS. 2007, pp. 11–18.

[DST04] Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using landmark points. Tech. rep. 2004.