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Motivation

Landmark Multidimensional Scaling [psro4] Theoretical Analysis

e Want representations respecting object similarity Theorem 1 (Consistency) )(poly(d)nlogn) triplets suffice for LOE to recover

Let £ < |n| be a set of landmark points. Given distances D;;. (2,7) € L x [n],
the embedding in Frébenius norm with high probability.

e Difficult to obtain quantitative measurements Landmark Multidimensional Scaling (LMDS) allows us to recover the full embedding X.

- Proof sketch: first bound the propagated error of the landmark columns estimate;
combined with a perturbation bound for LMDS to obtain the above result.

e Instead use triplet preference feedback from humans

&5 Our Contributions

Theorem 2 (Computational Complexity) Recovering the embedding up to a
fized error using LOE requires time O(m + nd> + d°) which is linear in n.

Is

closer to % than

e A fast embedding algorithm, Landmark Ordinal Embedding (LOE), inspired from

Landmark Multidimensional Scaling (LMDS). Experimental Results

Problem Statement

e A thorough analysis in both sample complexity and computational complexity:.

e LOE allows us to warm-start existing state-of-the-art embedding approaches that

Food Embedding using LOE-STE

- Given n objects with unknown embeddings x7,...,x;, € R4 are statistically more efficient but computationally more expensive. - STE, GNMDS: baselines
5 : : : : " " g e By warm-starting with LOE we can find accurate embeddings on massive datasets - LOE: our algorithm
- D" is the Euclidean Distance Matrix (EDM) i.e. D} ;= ‘ X; — X, much more quickly than existing methods. - LOE-STE: using LOE to warm-start STE

- Receive noisy answers to the triplet query “is object 7 closer to ¢ than k7"

G‘ <' . k> : 44 ) 44 ) 1 b 1 h ]:P) I:CC 77] f(D* D* ) Datasets
- Given (7, j, k) receive “yes” or “no” label where P | “yes” | = . — D1 . .
& ik - Synthetic (x; ~ normal dist.)

- We consider the Bradley-Terry-Luce model: f () = 5 +e>ql)(—9) Landmark Ordinal Embeddmg - MNIST (handwritten digits)
. . . ~ ~ . - FOOD (i f food
- Goal: using m queries, estimate Xy, ..., X, minimizing Frobenius norm error (images of food)
HX* — }A(HF Algorithm Sketch We sample a total number of e¢nlogn triplets per experiment
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Let T be the set of triplet queries (i, j, k) that received label “yes”. t: Randomly select £ landmarks from [n] | rme e fime © 0
2 Compute rankings Ry, ..., Ry of landmark cols. [/ (a) (n,d, c) = (10°,2,200) (a) (n,d, c) = (10°,2,50) (a) Time to completion vs 7
e Stochastic Triplet Embedding (STE) [VDMW12] 3. Estimate ¢ x ¢ landmark submatrix of D* D; D~ n 8000 \ . - R 055 o
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e Generalized Non-metric Multidimensional Scaling (GNMDS) [Aga+07 o 1 2 ' : B e
, b) Time to LOE error vs b) (n,d, c) = (2 x 10%, 10, 200 b) Purity vs
min Z fz’jk subject to Dy, — Djj = 1 — fz‘jk Figure 1: LOE ® "’ o )= ) e
X.&ijik=0,,,. ~ Figure 2: Scalability Figure 3: Warm-start Figure 4: MNIST
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