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Motivating Applications

Are you having trouble computing the Nash equilibrium of black-box games?

Is it because underlying agents’ utility functions are unknown and can only be
evaluated via simulation?

Is the evaluation on agents’ utility information noisy and too expensive?

Figure 1: Multiagent system simulation [HPPI20]: analyst configures agents’ strategic behavior models
and simulates for an expected outcome.

Problem Formulation

•Nash Equilibrium (NE) strategy profile x∗ = (x∗1, · · · , x∗n) for n agents.

x∗i ∈ argmax
xi

ui(xi,x
∗
−i), ∀i ∈ [n].

No changes in an agent’s strategy xi will lead to any gains, given the strategy of
other agents x∗

−i fixed.

•Given any strategy profile x, loss function f : X → R≥0 is defined as:

f (x) =
∑

i∈[n]
max
x′i∈Xi

ui(x
′
i,x−i)− ui(x) (1)

The sum of all agents’ gains from deviating from the given strategy; f (x∗) = 0.

•Goal: to minimize the unknown objective function Equation (1).

Learning via Gaussian Process

Figure 2: Learning unknown utility function with Gaussian process

•For agent i ∈ [n], the utility function ui is modeled as a Gaussian Process (GP).

•The utility function ui : X → [0, 1] is represented as ui(x) ∼ GP
(
µui(·), kui(·, ·)

)
.

•Given a history of observations D1:t, the posterior distribution under the
GP(0, k(x,x′)) prior remains Gaussian.

•The mean function is updated as: µui,t(x) = kt
ui
(x)⊤(Kt

ui
+ σ2I)−1y1:t

i

•The variance function is updated as:

σui,t(x)
2 = kui(x,x)− kt

ui
(x)⊤(Kt

ui
+ σ2I)−1kt

ui
(x)

Approximation of the Partial Maximum

We approximate the unknown vi(x−i) ≜ maxx′i ui(x
′
i,x−i) with its corresponding upper confidence bound (UCB) and lower

confidence bound (LCB) derived from the marginalized GPui|x−i
.

•Confidence Bounds:

–The upper confidence bound(UCB) and lower confidence bound(LCB) are defined as:

UCBvi,t(x−i,S) ≜ max
x′i:(x

′
i,x−i)∈S

µui,t−1(x
′
i,x−i) + β1/2σui,t−1(x

′
i,x−i), (2)

LCBvi,t(x−i,S) ≜ max
x′i:(x

′
i,x−i)∈S

µui,t−1(x
′
i,x−i)− β1/2σui,t−1(x

′
i,x−i), (3)

– β controls confidence level. A higher β value increases the confidence level, making the bounds wider.

–The UCB and LCB provide a high confidence bound for vi. The width of this bound becomes more accurate after a certain
number of iterations.

•Domain of the Marginal Maximum:

–S denotes the domain over which the marginal maximum is taken.

–This ensures that the bounds are computed considering the relevant subset of the input space.

Adaptive Level-set Estimation for Global Optimization

Example 1.A two-player game from [ADHO18; Par+08] as a running example, where the utility functions of the two
players are defined as u1(x1, x2) = (x2 − x∗2)

2 − (x1 − x∗1)
2 and u2(x1, x2) = (x1 − x∗1)

2 − (x2 − x∗2)
2. x∗ = (x∗1, x

∗
2) = (0.5, 0.5)

denotes the NE.

(a) Agent 1’s utility in Example 1. The left
plot represents agent 1’s partial maximum
utility from Equation (2) given agent 2’s
strategy x2.

(b) Heatmap showing the loss function
Equation (2) of Example 1. The optimal
loss of 0 is attained at the NE (0.5, 0.5).

(c) LCB on Example 1’s loss function
posterior with 10 initialization points. Un-
masked area indicates ROI defined by
Equation (11).

Figure 1: Function visualizations of Example 1, where x-axis (i.e., x1) represents agent 1’s action and y-axis (i.e., x2)
represents agent 2’s action. Agent 2’s utility information is symmetric to Figure 1a and is therefore omitted from this plot.
Figure 1a shows that a rational agent’s utility maximization strategy (i.e., Utility Maxima) is highly different from the
minima of the loss function (i.e., NE (0.5, 0.5)), which highlights the novelty and difficulty of optimizing our loss function
(Equation (2)). Figure 1c highlights the efficiency of our optimization algorithm by reducing the search space.

The definition of no-regret learning of Nash equilibrium
generalizes the no-regret notion in games discussed by Ja-
fari et al. [2001], Daskalakis et al. [2021], and resembles the
common notion of no-regret in the Bayesian optimization
literature [Srinivas et al., 2009, Chowdhury and Gopalan,
2017]. For every agent i 2 [n], we model their utility func-
tion ui : X ! [0, 1] as a GP, which is a probability distribu-
tion over functions, i.e.

ui(x) ⇠ GP
�
µui

(·), kui
(·, ·)

�
,

specified by its mean µui
(·) and covariance (or kernel)

kui
(·, ·), respectively. The corresponding hyper-parameters

are denoted by ✓ui . We assume every agent has the same
GP prior GP(0, k(x, x0)) for their utility function. Given a
history of observations D1:t, the posterior distribution under
a GP(0, k(x, x0)) prior is also Gaussian, with mean and
variance functions updated as follows.

µui,t(x) = kt
ui

(x)>(Kt
ui

+ �2I)�1y1:t
i

�ui,t(x)2 = kui
(x, x)� kt

ui
(x)>(Kt

ui
+ �2I)�1kt

ui
(x)

(4)

where kt
ui

(x) = [kui
(xj , x)]j2[t], y1:t

i = [y1
i , · · · , yt

i ], and
Kt

ui
= [kui

(xi, xj)]i2[t],j2[t] is the kernel matrix.

4 ALGORITHMS

4.1 APPROXIMATION OF THE PARTIAL
MAXIMUM

Before discussing the proposed algorithm, we describe
the method used in [Al-Dujaili et al., 2018]. Recall that
computing the loss f(x) requires the values of ui(x) and

maxx0
i
ui(x

0
i, x�i) (i.e. maxx0

i
ui(x

0
i, x�i) + ui(x)) for ev-

ery agent i 2 [n]. First of all, they proposed to approximate
ui(x) with the mean of the GP posterior, i.e. µui,t(x), as
denoted in Equation (4).

The more intriguing part is to approximate the partial max-
imum, i.e., vi(x�i) , maxx0

i
ui(x

0
i, x�i). As a result, its

maximum can be recovered by its mean and standard devia-
tion, i.e.,

max
x0

i

ui(x
0
i, x�i) = µvi(xi) + ⌧�vi(xi),

where µvi(xi), �vi(xi) denote the mean and standard devi-
ation of vi(x�i), ⌧ is a hyper-parameter of the algorithm.
Formally, given the observation history D1:t, they can be
computed as follows.

µvi,t(xi) = Ex0
i

⇥
µvi,t(x

0
i)
⇤

�2
vi,t(xi) = Ex0

i

⇥�
µvi,t(x

0
i) � µvi,t(xi)

�2⇤ (5)

The function value can therefore be approximated as

f̂(x|D1:t) ⇡ max
i

µvi,t(xi) + ⌧�vi,t(xi)� µui,t(x). (6)

Al-Dujaili et al. [2018] used Equation (6) as the
acquisition function and searching the query point
xt+1 = arg minx f̂(x|D1:t) for the next round t + 1.
However, the acquisition function in the BO should balance
between exploration and exploitation in general, while
maximizing Equation (6) is pure exploitation, i.e., sampling
from potentially optimal areas in X according to the
posterior of the GP model.

Figure 3: Function visualizations of Example 1, where x-axis represents agent 1’s action and y-axis represents agent 2’s action.

The UCB and LCB for f are UCBf,t(x,S) ≜
∑

i∈[n]UCBvi,t(x−i,S) − LCBui,t(x), LCBf,t(x,S) ≜
∑

i∈[n] LCBvi,t(x−i,S) −
UCBui,t(x). We define the filtering threshold as UCBf,t,min ≜ minx∈X UCBf,t(x). The sublevel-set

X̂ t ≜ {x ∈ X | LCBf,t(x) ≤ min(UCBf,t,min, 0)}
serve as the region of interest for global optimization.

Bayesian Optimization with Adaptive Level-Set Estimation

Key Theoretical Results

Here, we justify that the proposed acquisition function efficiently reduces the width of the confidence interval of the global optimum.

Theorem 1.The width of the resulting confidence interval of the global optimum f ∗ = f (x∗) has an upper bound. That is,

under the assumptions above, with a constant β = 2 log
(
n|S̃|T/δ

)
, and xt = argmaxx∈X αf,t(x,X ), after at most T ≥ βγ̂T Ĉ1

ϵ2

iterations, we have
P [|CIf ∗,T | ≤ ϵ, f ∗ ∈ CIf ∗,T ] ≥ 1− δ

Assuming that the Nash-Equilibrium exists, and the points of ROI are sufficiently close to x∗, we have with probability at least
1− δ that ARISE achieves ϵ-Nash Equilibrium.

Theorem 2.We assume the aforementioned assumptions hold. We apply the same β and the acquisition function as

illustrated in figure 4. In addition, we assume after T ≥ βγ̂T Ĉ1

ϵ2 iterations, when ∀x ∈ S̃X̂ t, it holds that UCBui,t(x−i, S̃X̂ t) =

UCBui,t(x−i, S̃) and LCBui,t(x−i, S̃X̂ t) = LCBui,t(x−i, S̃), we have

P


f (xT ) ≤

√
βγ̂T Ĉ1

T
≤ ϵ


 ≥ 1− δ

Here Ĉ1. Previous work by [Sri+09] bounds the maximum information gain γ to be sublinear to T .

Experimental Results
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Figure 4: In each plot, the x-axis denotes the number of function evaluations. The curves show the f (xt) values averaged over at least ten independent
trials. Shaded area denotes the standard error.

• Saddle: The running example presented in Example 1 [ADHO18; PBH19].

•RPS: The Rock-Paper-Scissors game, with Nash Equilibrium at equal probabilities for all options.

•Hotelling: Firms choose locations on a 2D grid to attract customers, balancing proximity and competition [Bre05].

•Budget Allocation: Advertisers allocate budgets to media channels to maximize customer reach, using a bipartite graph
model with activation probabilities [MYK15].

Additional Resources


