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Are you having trouble computing the Nash equilibrium of black-box games’

[s it because underlying agents’ utility functions are unknown and can only be
evaluated via simulation?

[s the evaluation on agents’ utility information noisy and too expensive?
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and simulates for an expected outcome.

Problem Formulation

*

e Nash Equilibrium (NE) strategy profile &* = (27, - - -

,x’) for n agents.

T, € arg manuz(xzafBii)v Vi € [n].

No changes in an agent’s strategy x; will lead to any gains, given the strategy ot
other agents x* ; fixed.

e Given any strategy profile @, loss function f : X' — Ry is defined as:

fle) =) maxu(z;, ;) — uiw) (1)
iem) €
The sum of all agents’ gains from deviating from the given strategy; f(x*) = 0.

e Goal: to minimize the unknown objective function Equation (1).

Learning via Gaussian Process
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Figure 2: Learning unknown utility function with Gaussian process

e For agent ¢ € [n|, the utility function u; is modeled as a Gaussian Process (GP).
e The utility function w; : X — [0, 1] is represented as w;(x) ~ GP (g, (+), k(- -)).

e Given a history of observations D'?, the posterior distribution under the

GP(0, k(x,x")) prior remains Gaussian.
e The mean function is updated as: pi,, (@) = kZ(m)T(KFM T 021)—1%”
e The variance function is updated as:
oui(®) = ky(z, @) — K, (z) (K;, +0°]) 'k ()

Approximation of the Partial Maximum

We approximate the unknown v;(@_;) = max, w;(2}, _;) with its corresponding upper confidence bound (UCB) and lower
confidence bound (LCB) derived from the marginalized GP,, | ..

e Confidence Bounds:
—The upper confidence bound(UCB) and lower confidence bound(LCB) are defined as:

UCByi(@—; 8) & | max  pu,e-1(), @) + 60w, 11w, @), (2)
LCBU“t(m—’H S) é /< I/Il&X)ES ,uuz,t—l(xga ','B—Z) o 61/20u27t_1<x;7 m_z)7 (3)

— 3 controls confidence level. A higher 5 value increases the confidence level, making the bounds wider.

—The UCB and LCB provide a high confidence bound for v;. The width of this bound becomes more accurate atter a certain
number of iterations.

¢ Domain of the Marginal Maximum:

—& denotes the domain over which the marginal maximum is taken.

—This ensures that the bounds are computed considering the relevant subset of the input space.

Adaptive Level-set Estimation for Global Optimization

Example 1. A two-player game from [ADHO18; Par+08] as a running example, where the utility functions of the two
players are defined as ui(x1,72) = (20 — x3)° — (11 — x7)* and uo(x1, 19) = (11 — 27)* — (19 — T3)*. x* = (zF,2%) = (0.5,0.5)

denotes the NE.
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Figure 3: Function visualizations of Example 1, where z-axis represents agent 1’s action and y-axis represents agent 2’s action.
The UCB and LCB for f are UCBy(x,S) = 3,1 UCB, s(® 4, S) — LCB, 4(x), LCBfs(x,S) = 3., LCBy4(x 4, S) —
UCB,, (). We define the filtering threshold as UCB s iy 2 mingey UCB ri(@). The sublevel-set
X'& {x e X | LCBjy(x) < min(UCB /i, 0)}

serve as the region of interest for global optimization.

Bayesian Optimization with Adaptive Level-Set Estimation
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Key Theoretical Results

Here, we justify that the proposed acquisition function efficiently reduces the width of the confidence interval of the global optimum.

Theorem 1. The width of the resulting confidence interval of the global optimum f* = f(x*) has an upper bound. That is,

under the assumptions above, with a constant 5 = 2log (n|§]T/5), and ' = argmax .y ari(x, X), after at most T > @
iterations, we have
Pl|IClpr| <€, ffeClpp|>1—-6

Assuming that the Nash-Equilibrium exists, and the points of ROI are sufliciently close to x*, we have with probability at least
1 — 0 that ARISE achieves e-Nash Equilibrium.

Theorem 2. We assume the aforementioned assumptions hold. We apply the same 5 and the acquisition function as
Wllustrated in figure 4. In addition, we assume after T' > % iterations, when VY& € Sy, it holds that UCB,, +(x_;, Sy:) =
UCB, +(x—_;,S) and LCB,, ((x_;, Sy:) = LCB,, +(x_;,S), we have

P f(wT)<\/ij,Cl<e > 16

Here C}. Previous work by [Sri+09] bounds the maximum information gain -y to be sublinear to T

Experimental Results
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Figure 4: In each plot, the z-axis denotes the number of function evaluations. The curves show the f (a:t) values averaged over at least ten independent
trials. Shaded area denotes the standard error.

e Saddle: The running example presented in Example 1 [ADHO18; PBH19].
e RPS: The Rock-Paper-Scissors game, with Nash Equilibrium at equal probabilities for all options.
e Hotelling: Firms choose locations on a 2D grid to attract customers, balancing proximity and competition [Bre05].

e Budget Allocation: Advertisers allocate budgets to media channels to maximize customer reach, using a bipartite graph
model with activation probabilities [MYK15|.

Algorithm 1 Adaptive Region of Interest Search for Nash Equilibrium (ARISE)

1: Input:Search space X, initial observation DO horizon T
2: fort =1to 1 do
3:  Fit the Gaussian processes GPy, ¢: 0y, + < argmin, —logP [y;*~" | 211 6, ]

4:  Identify ROISs via sublevel-set estimation X* « {x € X | LCB; () < 0}
5

Optimize the sublevel-set acquisition function: &* < arg max o £z, X t)
rc X't
6: Dl:t Y Dl:t—l U {((Et, ,yt)}
7: end for
8: Output: arg min LCB ¢ ()
zeXT
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