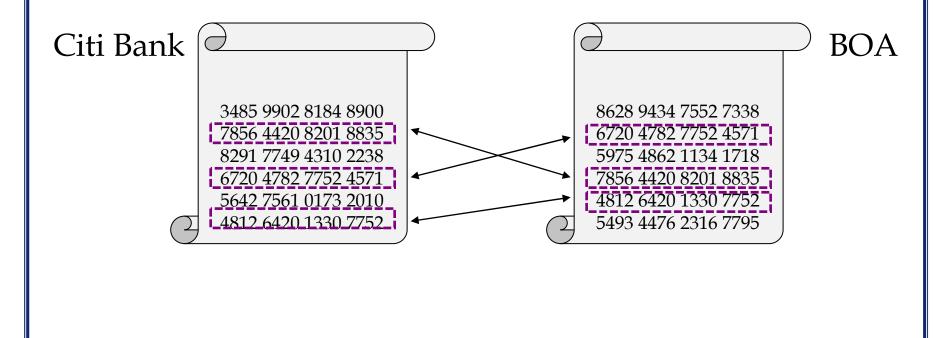


Privacy Preserving Group Linkage

Fengjun Li¹, Yuxin Chen¹, Bo Luo¹, Dongwon Lee², and Peng Liu² ¹EECS Department, University of Kansas, ²College of IST, Penn State University

Record Linkage

• Record linkage is to identify related *records* associated with the same entity from multiple databases

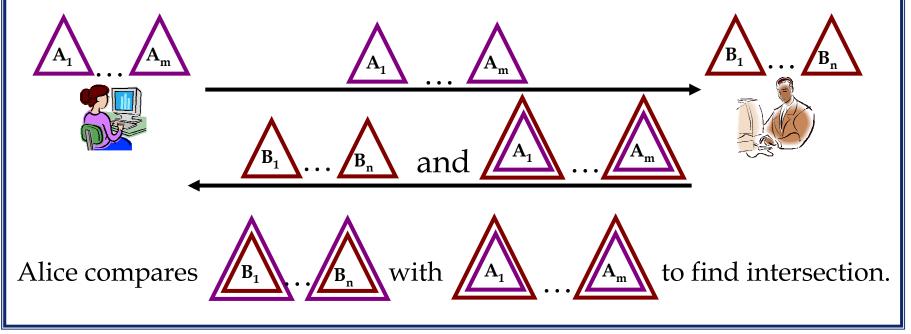


Privacy-Preserving Record Linkage

- Privacy becomes an issue when data is sensitive.
 - I will only share with you on the "linked records"
 - I will not give you the plain text of my primary keys.
- Secure multi-party set intersection problem
 - Solutions based on commutative encryption
 - Solutions based on homomorphic encryption

AES Protocol – Commutative Encryption Based

- **Commutative Encryption:** *using the same set of commutative keys, the encrypted content can be recovered in any arbitrary order.*
- **AES Protocol** [Agrawa et. al., SIGMOD 2003]:



FNP Protocol – Homomorphic Encryption Based

- **Homomorphic encryption:** allows certain algebraic operations in the plaintext to be performed on the ciphertext without decryption.
- **FNP Protocol** [Freedman et. al., EUROCRYP 2004]:

- 1. Constructs polynomial $R(x) = \prod (x r_i)$
- 2. Computes coefficients in $R(x) = \sum_{u=0}^{u=m} \alpha_u x^u$

{r1,r2,...,rm} Encrypt coefficients with homomorphic key: $E(\alpha_0), E(\alpha_1), ..., E(\alpha_m)$

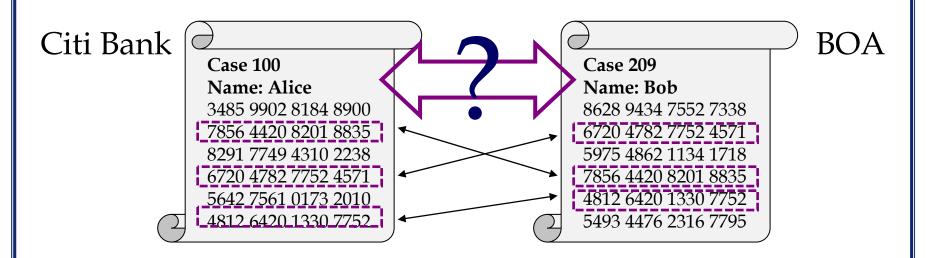
- 3. Re-construct encrypted polynomial: $E(R(x)) = \sum_{u=0}^{u=m} E(\alpha_u) x^u$
- 4. Evaluate $\mathbf{E}(R(sj))$ for each element sj
- 5. Choose random γ and v, and compute $E(\gamma \times R(sj) + v)$. For each $sj \Box R \cap S$, E(R(sj))=0, and $E(\gamma \times R(sj) + v)=E(v)$.

 $E(\gamma \times R(sj)+v)$

6. Decrypt $\mathbf{E}(\mathbf{\gamma} \times R(sj) + v)$, and the number of $v = |\mathbf{R} \cap \mathbf{S}|$.

Group Linkage

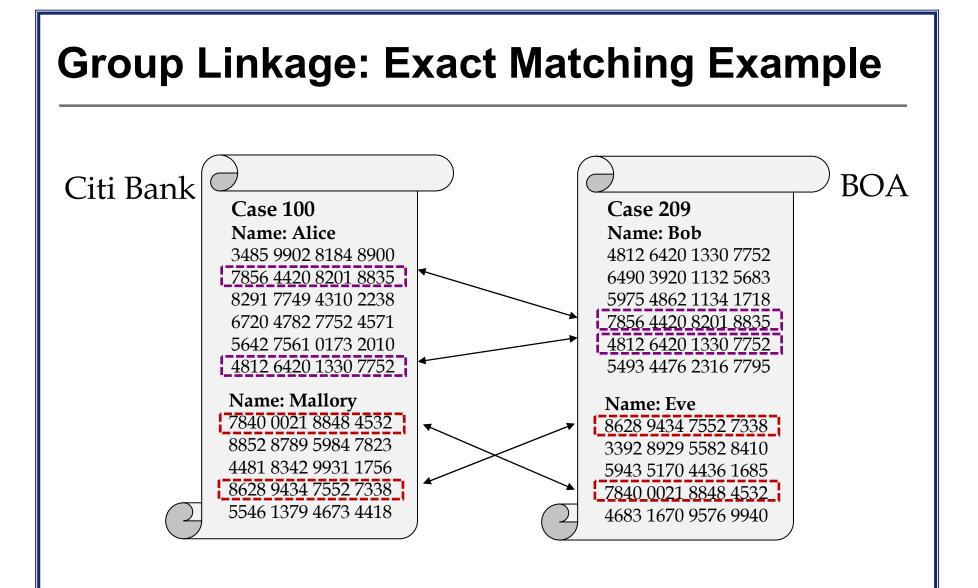
Extended from record linkage [On et. al., ICDE 2007]
 – Records -> groups of records



• Group linkage is to identify related *groups of records* associated with the same entity from multiple databases

Group Linkage

- For two sets of groups of records R={R₁, ..., R_u} and S={S₁, ..., S_v}, GL calculates *group-level similarity* SIM(R,S), and determines if R and S are associated with the same entity
 - For R={ $r_1,...r_m$ } and S={ $s_1,...s_n$ }, calculate *record-level* similarity **sim**(r,s)
 - SIM(R,S) is a function of sim(r,s)



Group Linkage: Approximate Matching Example

SY

 modeling and representation of data, metadata, ontologies, and processes

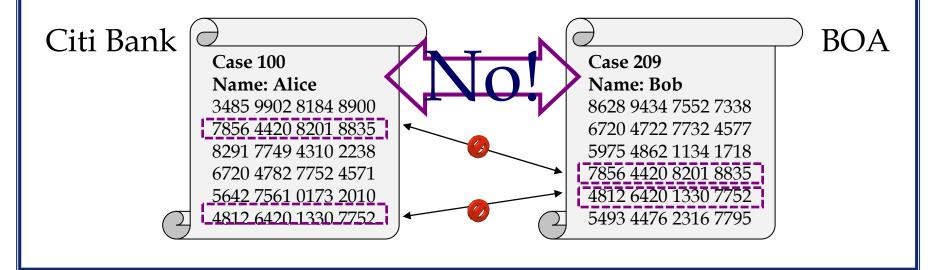
• querying of scientific data

• modeling and representation of data and knowledge for scientific domains

• querying and analysis of scientific data.

Group Membership Inference Problem

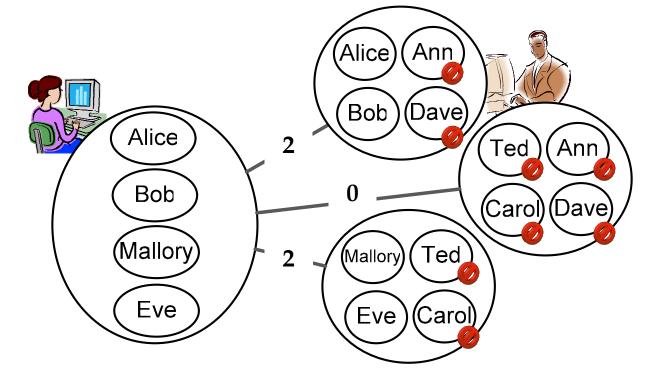
- Two parties share two groups after they confirm both groups are associated with the same entity.
- Privacy?
 - Cannot share "intersect" records when two groups are not linked.



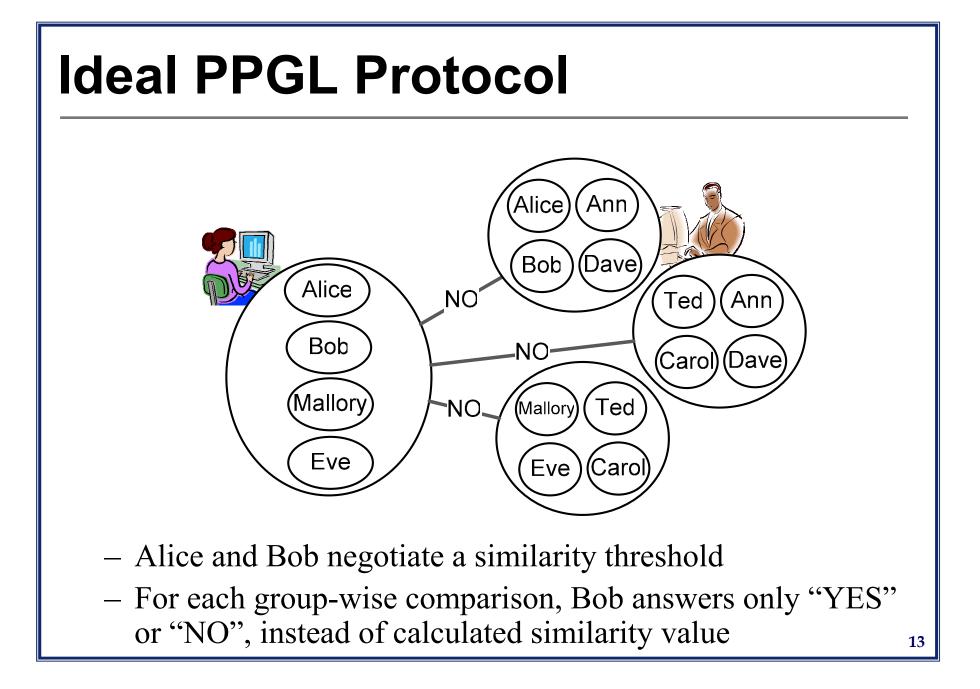
Privacy-Preserving Group Linkage (PPGL)

- PPRL protocols can be applied in PPGL
 - Secure set intersection size
 - The intersection size can be used to calculate group-level similarity
- However, directly applying PPRL protocol suffers from group membership inference problem

Group Membership Inference Problem



- Identities of overlapped group members can be inferred
- An attacker can manipulate the group members to infer more



Threshold Privacy-Preserving Group Linkage

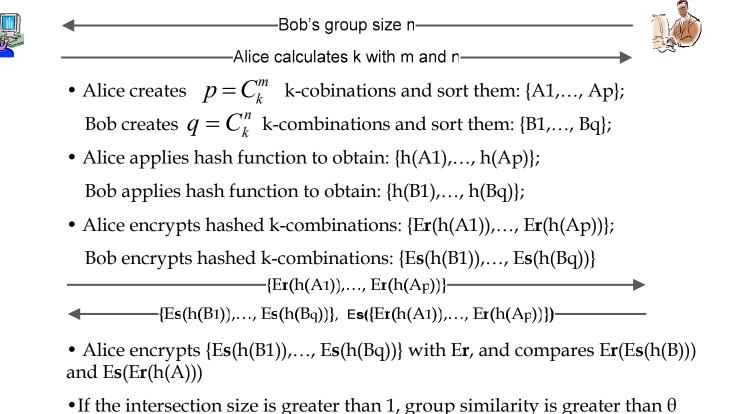
- TPPGL Problem: Alice and Bob preset a threshold θ, and follow the protocol to match two groups R and S. In the end, they learn only |R|, |S|, and a Boolean result B, where B = tr∪e iff SIM(R, S) ≥θ.
- We propose three TPPGL protocols for both exact matching and approximate matching
 - K-combination approach for TPPGL-E
 - Homomorphic encryption approach for TPPGL-E
 - TPPGL-A protocol with record-level cut-off

K-Combination Approach for TPPGL-

- Alice has a set of groups $\mathbf{R} = \{r_1, \dots, r_m\}$, and Bob has a set of groups $\mathbf{S} = \{s_1, \dots, s_n\}$. They negotiate a similarity threshold θ .
- Calculate the *minimum number of identical records* in **R** and **S** for them to be linked $SIM(\mathbf{R}, \mathbf{S}) = k/(|\mathbf{R}|+|\mathbf{S}|-k) \ge \theta$, so $k = \left[\frac{(m+n)\theta}{1+\theta}\right]$
- We enumerate all *k-combinations* of Alice's and Bob's group elements. **R** and **S** are linked iff there is at least one identical k-combination.

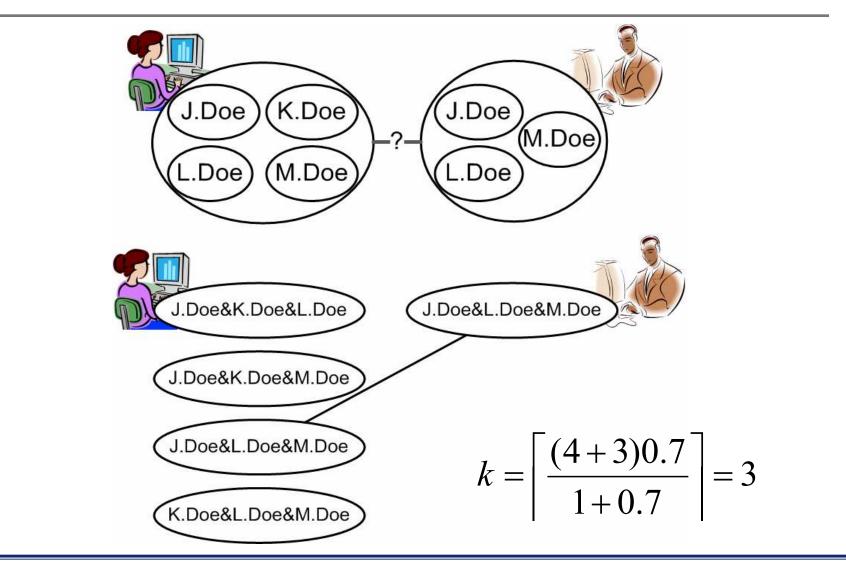
Input: Alice's group $\mathbf{R} = \{r_1, ..., r_m\}$, Bob's group $\mathbf{S} = \{s_1, ..., s_n\}$, and a pre-negotiate similarity threshold θ

Protocol:



Result: Alice and Bob learn $|\mathbf{R}|$, $|\mathbf{S}|$, and if group similarity > θ

K-Combination Approach Example

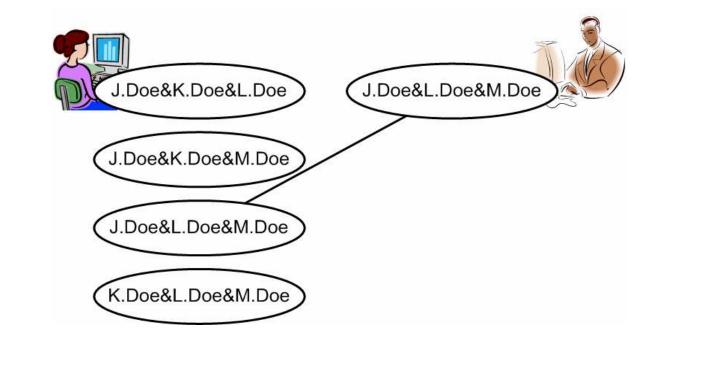


K-Combination Approach for TPPGL-

• Problem?

F

- Computation!



Homomorphic Encryption Approach for TPPGL-E

Input: Alice's group $\mathbf{R} = \{r_1, ..., r_m\}$, Bob's group $\mathbf{S} = \{s_1, ..., s_n\}$, and a pre-negotiate similarity threshold θ

Protocol:

• Alice constructs $R(x) = \prod_{u=0}^{\infty} (x - r_i)$ and computes coefficients α_u that $R(x) = \sum_{u=0}^{u=m} \alpha_u x^u$

——Alice encrypts the coefficients $\{E(\alpha_0), ..., E(\alpha_m)\}$ and send to Bob—

- For each sj, Bob evaluates the polynomial to get **Enc**(*R*(sj)), without decryption
- Bob chooses a random value γ , and a pre-set special value v. For each **Enc**(*R*(sj)), Bob computes **Enc**($\gamma \times R(sj)+v$).

•Bob chooses a random number kb, and injects kb number of **Enc**(v) into the set. Meanwhile, Bob also injects random number of random values into this set.

———Bob permutes the polluted set of Enc(γ× R(sj)+v)————

• Alice decrypts all items, and counts the number of v values: kb+ $|R \cap S|$

—Enc(kb+|R S|)

• Bob calculates $Enc(kb+|R\cap S|)$ - $Enc(kb+k)=Enc(|R\cap S|-k)$, and then creates random number $\gamma' \le N$, and $v' \le \gamma'$

------Enc(Γ ' ×(R \cap S -k)+v')------

• Alice decrypts m= $\gamma' \times (|\mathbf{R} \cap \mathbf{S}| - k) + v'$, and output "YES" if m<N/2, or "NO" if m>N/2

Result: Alice and Bob learn $|\mathbf{R}|$, $|\mathbf{S}|$, and if group similarity > θ

Group Linkage with Approximate Matching

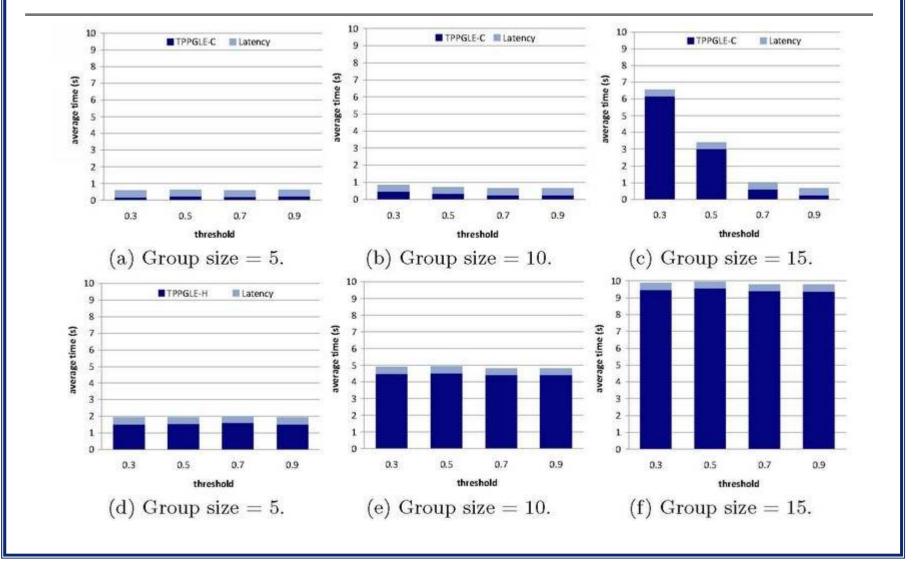
- Alice holds a group of records
- Bob holds a group of records
- Record level similarity: inner product with cut-off
- Group level similarity:

```
SIM(R, S) =BMsim,\rho (R, S)
=min(m', n')/(|R|+|S|+min(m', n'))
```

Experiment Results

- Three real data sets [Tang et. al., KDD 2009]
 - AN: a co-author network with 640,134 authors and 1,554,643 co-author relationships
 - CN: a paper citation network of 2,329,760 papers and 12,710,347 citations
 - MN: a movie network with 142,426 relationships
 - Generate synthetic groups
- Evaluate *end-to-end execution time* with varying *group-size* (with 5, 10, 15 records per group) and *threshold* $\Theta(\Box \{0.3, 0.5, 0.7, 0.9\})$

Average End-to-End Execution Time



Thank You!

Questions?

