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Key observations

context-free baselines: RS, QBC, IWAL, MP

contextual baselines: CQBC, CIWAL, Oracle

pseudo-regret for stochastic setting

expected regret for adversarial setting

The contextual active model selection protocol. Assume that the learner knows
the set of classifiers F as well as the set of model selection policies ⇧. At round t, the
learner receives a data instance xt 2 X as the context for the current round, and computes
the predicted label ŷt,j = fj (xt) for each pre-trained classifier indexed by j 2 [k]. Denote
the vector of predicted labels by all k models by ŷt := [ŷt,1, . . . , ŷt,k]>. Based on previous
observations, the learner identifies a model /classifier fjt and makes a prediction ŷt,jt for
the instance xt. Meanwhile, the learner can obtain the true label yt only if it decides to
query xt. Upon observing yt, the learner incurs a query cost, and receives a (full) loss vector
`̀̀t = I{ŷt 6=yt}, where the jth entry `t,j := I{ŷt,j 6=yt} corresponds to the 0-1 loss for model
j 2 [k] at round t. The learner can then use the queried labels to adjust its model selection
criterion for future rounds.

Performance metric. Note that if xt is misclassified by the model jt selected by learner
at round t, i.e. ŷt,jt 6= yt, it will be counted towards the cumulative loss of the learner,
regardless of the learner making a query. Otherwise, no loss will be incurred for that round.
For a learning algorithm A, its cumulative loss over T rounds is defined as L

A

T :=
PT

t=1 `t,jt .
For stochastic data streams, we assume that each policy i recommends the most probable

model2 w.r.t. ⇡i(xt) for context xt. We use maxind(w) := argmaxj:wj2w wj to denote
the index of the maximal-value entry3 of w. Since (x, y) are drawn i.i.d., we define µi =
1
T

PT
t=1 Ext,yt

⇥
`t,maxind(⇡i(xt))

⇤
. This leads to the pseudo-regret for the stochastic setting over

T rounds, defined as
RT (A) = E[LA

T ]� T min
i2[|⇧⇤|]

µi. (1)

In an adversarial setting, since the data stream (and hence the loss vector) is determined
by an adversary, we consider the reference best policy to be the one that minimizes the loss
on the adversarial data stream, and the expected regret is defined as RT (A) = E[LA

T ] �

mini2[|⇧⇤|]
PT

t=1
˜̀
t,i (2), where ˜̀

t,i := h⇡i (xt) , `̀̀ti denotes the expected loss if the learner
commits to policy ⇡i, randomizes and selects jt ⇠ ⇡i (xt) (and receives loss `t,jt) at round t.

3. Contextual Active Model Selection with Expert Advice

Contextual model selection. Our key insight underlying the contextual model selection
strategy extends from the online learning with expert advice framework (Freund and Schapire,
1997; Burtini et al., 2015). Pseudocode relevant to the model selection steps is provided
in Line 4-8 in Fig. 1. At each round, CAMS maintains a probability distribution over the
(extended) policy set ⇧⇤, and updates those according to the observed loss for each policy.
We use qt := (qt,i)i2|⇧⇤| to denote the probability distribution over ⇧⇤ at t. Specifically,
the probability qt,i is computed based on the exponentially weighted cumulative loss, i.e.
qt,i / exp

⇣
�⌘tL̃t�1,i

⌘
where L̃t,i :=

Pt
⌧=1

˜̀
⌧,i denotes the cumulative loss of policy i.

Under the stochastic setting, CAMS adopts a weighted majority strategy (Littlestone
and Warmuth, 1994) when selecting models. The vector of weighted votes each model receives
from the policies are computed as wt =

P
i2|⇧⇤| qt,i⇡i(xt), which can be interpreted as a

distribution induced by the weighted policy. Then, the most probable model jt = maxind(wt)

2. Our choice of the most probable selection strategy is based on superior empirical performance (see §5).
3. Assume ties are broken randomly.
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loss vector `̀̀t = I{ŷt 6=yt}
, where the jth entry `t,j := I{ŷt,j 6=yt}

corresponds to the 0-1 loss for model
j 2 [k] at round t. The learner can then use the queried labels to adjust its model selection criterion
for future rounds.

Performance metric. Note that if xt is misclassified by the model jt selected by learner at round t,
i.e. ŷt,jt 6= yt, it will be counted towards the cumulative loss of the learner, regardless of the learner
making a query. Otherwise, no loss will be incurred for that round. For a learning algorithm A, its
cumulative loss over T rounds is defined as LA

T
:=

P
T

t=1 `t,jt .

In practice, the choice of model jt at round t by the learner A could be random: For stochastic data
streams where (x, y) arrives i.i.d., the learner may choose different models for different random
realizations of (xt, yt). For the adversarial setting where the data stream {(xt, yt)}t�1 is chosen by
an oblivious adversary before each round, the learner may randomize its choice of model to avoid a
constant loss at each round [33]. Therefore, due to the randomness of LA

T
, we consider the expected

cumulative loss E[LA

T
] as a key performance measure of the learner A. To characterize the (relative)

progress of A, we consider the regret of A—formally defined as follows— as the difference between
the cumulative loss received by the leaner and the loss if the learner selects the “best policy” ⇡⇤

2 ⇧⇤

in hindsight.

For stochastic data streams, we assume that each policy i recommends the most probable model4 w.r.t.
⇡i(xt) for context xt. We use maxind(w) := argmax

j:wj2w wj to denote the index of the maximal-
value entry5 of w. Since (x, y) are drawn i.i.d., we define µi =

1
T

P
T

t=1 Ext,yt

⇥
`t,maxind(⇡i(xt))

⇤
. This

leads to the pseudo-regret for the stochastic setting over T rounds, defined as

RT (A) = E[LA

T
]� T min

i2[|⇧⇤|]
µi. (1)

In an adversarial setting, since the data stream (and hence the loss vector) is determined by an
adversary, we consider the reference best policy to be the one that minimizes the loss on the
adversarial data stream, and the expected regret is defined as

RT (A) = E[LA

T
]� min

i2[|⇧⇤|]

TX

t=1

˜̀
t,i, (2)

where ˜̀
t,i := h⇡i (xt) , `̀̀ti denotes the expected loss if the learner commits to policy ⇡i, randomizes

and selects jt ⇠ ⇡i (xt) (and receives loss `t,jt ) at round t.

Notations in this paper are summarized in Table 1 (see Appendix A).

4 Contextual Active Model Selection

We introduce our main algorithm, CAMS, for both stochastic and adversarial data streams.

Contextual model selection. Our key insight underlying the contextual model selection strategy
extends from the online learning with expert advice framework [27, 13]. Pseudocode relevant
to the model selection steps is provided in Line 4-8 in Fig. 1. At each round, CAMS maintains a
probability distribution over the (extended) policy set ⇧⇤, and updates those according to the observed
loss for each policy. We use q

t
:= (qt,i)i2|⇧⇤| to denote the probability distribution over ⇧⇤ at t.

Specifically, the probability qt,i is computed based on the exponentially weighted cumulative loss, i.e.
qt,i / exp

⇣
�⌘tL̃t�1,i

⌘
where L̃t,i :=

P
t

⌧=1
˜̀
⌧,i denotes the cumulative loss of policy i.

For adversarial data streams, it is natural for both the online learner and the model selection policies
to randomize their actions to avoid linear regret [33]. Following this insight, CAMS randomly
samples a policy it ⇠ q

t
, and—based on the current context xt—samples a classifier jt ⇠ ⇡it (xt) to

recommend at round t.

Under the stochastic setting, CAMS adopts a weighted majority strategy [45] when selecting
models. The vector of weighted votes each model receives from the policies are computed as

4Our choice of the most probable selection strategy is based on superior empirical performance (see §6.2).
5Assume ties are broken randomly.
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C Supplemental Materials on Experimental Setup

C.1 Implementation details

We build our contextual online active learning platform on top of prior non-contextual work [8]
around the four benchmark datasets. The context xt is the raw context of the data (e.g., the 32x32
image for CIFAR10). The predictions ŷt contain the predicted label vector of all the classifiers’
predictions according to the online context xt. The oracle file contains the true label yt of xt. The
advice matrix file contains the matrix data and each row represents a matrix of all policies’ probability
distribution � over all the classifiers on context xt. To adapt to the online setting, we sequentially
draw T i.i.d. instances from the data distribution. For a fair comparison, all algorithms receive data
instances in the same order.

Algorithm 1 CONTEXTUAL ACTIVE MODEL SELECTION PROTOCOL

1: Given a set of classifiers F and model selection policies ⇧
2: for t = 1, 2, ..., T do
3: The learner receives a data instance xt 2 X as the context
4: Compute the predicted label ŷt,j for each pre-trained classifier fj (xt) , j 2 [k]
5: The learner identifies a model fjt and makes a prediction ŷt,jt for the instance xt

6: if The learner decide to query then
7: It incurs a QUERY COST and observes true label yt
8: It receives a (full) 0-1 loss vector `̀̀t = I{ŷt 6=yt}
9: It can then use the queried labels to adjust its model selection criterion

C.2 Regularized policy

As discussed in §??, we wish to ensure that the probability a policy selecting any model is bounded
away from 0 so that the regret bound in Theorem ?? is non vacuous. In our experiments, we achieve
this goal by applying a regularized policy ⇡ as shown in Algorithm 1.

C.3 Summary of datasets and models

We summarize the characteristics of the datasets, models, and the model selection policies in Table 4.

dataset #classes total instances test set stream size classifier policy
CIFAR10 10 60000 10000 10000 80 85
DRIFT 6 13910 3060 3000 10 11
VERTEBRAL 3 310 127 80 6 17
HIV 2 40000 4113 4000 4 20

Table 4: Characteristics of benchmark datasets, models and model selection policies

C.4 Hyperparameters

We performed our experiments on a Linux server with 80 Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz and total 528 Gigabyte memory.

By considering the resource of server, We set 100 realizations and 3000 stream-size for DRIFT, 20
realizations and 10000 stream-size for CIFAR10, 200 realizations and 4000 stream size for HIV,
300 realization and 80 stream-size for VERTEBRAL. In each realization, we randomly selected
steam-size aligned data from testing-set and make it as online streaming data which is the input of
each algorithm. Thus, we got independent result for each realization.

A small realization number would increase the variance of the results due to the randomness of stream
order. A large realization number would make the result be more stable but at the cost of increasing
computational cost (time, memory, etc.). We chose the realization number by balancing both aspects.
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B Comparison against Related Work

B.1 Problem Setup

For better positioning of this work, we compare our setting against a few related works in this domain,
and highlight the key differences in the problem setup in Table 2.

Algorithm Online bagging Hedge EXP3 EXP4 QBC Model Picker CAMS
model selection no yes yes yes no yes yes
full-information yes yes no no yes yes yes
active no no no no yes yes yes
contextual no no no yes no no yes

Table 2: Algorithm comparison: problem setup

B.2 Theoretical Guarantees

We summarize the regret and query complexity bounds (if applicable) of related algorithms in
Table 3.6

Algorithm Regret Query Complexity
Exp3 2

p
Tk log k –

Exp3.p 5.15
p

nT log n
� –

Exp4
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2Tk log n –
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kT ln n
� –
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Table 3: Regret and query complexity bound

6We view Tµi⇤ , L̃T,⇤ as constants given by an oracle in the stochastic setting and the adversarial setting
respectively. Then the query-complexity bound is regarded sub-linear. For the notations in this table: i⇤ is the
model with the highest expected accuracy; ✓j = P [`.,j 6= `.,i⇤ ] is the probability that exactly one of j and i⇤

correctly classifies a sample; � := minxt{maxwj2wt
i⇤

wj �maxwj2wt
i⇤ ,j 6=maxind(wt

i⇤ ) wj}.
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Table 3: Regret and query complexity bound

6We view Tµi⇤ , L̃T,⇤ as constants given by an oracle in the stochastic setting and the adversarial setting
respectively. Then the query-complexity bound is regarded sub-linear. For the notations in this table: i⇤ is the
model with the highest expected accuracy; ✓j = P [`.,j 6= `.,i⇤ ] is the probability that exactly one of j and i⇤

correctly classifies a sample; � := minxt{maxwj2wt
i⇤

wj �maxwj2wt
i⇤ ,j 6=maxind(wt

i⇤ ) wj}.
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1: Input: Models F , policies ⇧⇤, #rounds T , budget b
2: Initialize loss L̃0  0; query cost C0  0
3: for t = 1, 2, ..., T do
4: Receive xt
5: ⌘t  SETRATE(t, xt, |⇧⇤|)
6: Set qt,i / exp

⇣
�⌘tL̃t�1,i

⌘
8i 2 |⇧⇤|

7: jt  RECOMMEND(xt, qt)
8: Output ŷt,jt ⇠ ft,jt as the prediction for xt
9: Set E (ŷt,wt) :=

1
c

P
y2Y,¯̀yt 2(0,1)

¯̀y
t logc

1
¯̀y
t

a

10: Set query lower bound �t0 = 1p
t

11: Compute zt = max {�t0,E (ŷt,wt)}
12: Sample Ut ⇠ Ber (zt)
13: if Ut = 1 and Ct  b then
14: Query the label yt
15: Ct  Ct�1 + 1
16: Compute `̀̀t: `t,j = I {ŷt,j 6= yt} , 8j 2 [|F|]
17: Estimate model loss: ˆ̀t,j =

`t,j
zt

, 8j 2 [|F|]
18: Update ˜̀̀̀t: ˜̀t,i  h⇡i(xt), ˆ̀t,ji, 8i 2 [|⇧⇤|]
19: L̃t = L̃t�1 + ˜̀̀̀

t

20: else
21: L̃t = L̃t�1

22: Ct  Ct�1

awe denote by ¯̀y
t := hwt, I {ŷt 6= y}i as the expected loss if the true label is y, where

wt = ⇡maxind(qt)(xt) and maxind(w) := argmaxj:wj2w wj .

21: procedure SETRATE(t, xt,m)
22: if STOCHASTIC then
23: ⌘t =

q
lnm
t

24: if ADVERSARIAL then
25: ⇢t = 1�max⌧2[t]hwt, I {ŷt = y}i
26: ⌘t =

q
1p
t
+ ⇢t

c2 ln c ·
q

lnm
T

27: return ⌘t

29: procedure RECOMMEND(xt, qt)
30: if STOCHASTIC then
31: wt =

P
i2|⇧⇤| qt,i⇡i(xt)

32: jt  maxind(wt)

33: if ADVERSARIAL then
34: it ⇠ qt
35: jt ⇠ ⇡it (xt)

36: return jt

Figure 1: The CAMS Algorithm
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26: ⌘t =

q
1p
t
+ ⇢t

c2 ln c ·
q

lnm
T

27: return ⌘t

29: procedure RECOMMEND(xt, qt)
30: if STOCHASTIC then
31: wt =

P
i2|⇧⇤| qt,i⇡i(xt)

32: jt  maxind(wt)

33: if ADVERSARIAL then
34: it ⇠ qt
35: jt ⇠ ⇡it (xt)

36: return jt

Figure 2: The CAMS Algorithm
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best policy, CAMS will achieve its performance. Otherwise, CAMS will outperform and reach a
better policy under the no regret guarantee.

Query complexity. A sub-linear and low increase in query cost indicate that the learner is actively
(not passive or greedily) querying. Notably, by comparing to variance-based strategy [8] and
evaluating based on the same model selection strategy, Appendix ?? indicates that CAMS’s entropy-
based query strategy requests 6%, 14%, and 71% fewer queries for VERTEBRAL, DRIFT, and
CIFAR10 datasets, respectively, while achieving even less cumulative loss. Fig. ?? (Middle) and
Table ?? also demonstrate the compelling effectiveness of CAMS’s query strategy outperforming
all baselines (other than Oracle) in terms of query cost in VERTEBRAL, DRIFT, and CIFAR10
benchmarks, which is consistent with our theoretical query complexity guarantee in Theorem ??.

Cost effectiveness. We denote cost effectiveness as the rate of change in cumulative loss compared
to query cost changes. Higher cost effectiveness represents the higher decreasing rate in cumulative
loss towards converging to the optimal by increasing the same amount of query cost. Fig. ?? (Bottom)
illustrates the cost effectiveness of each algorithm. It demonstrates that CAMS outperforms all
baselines (other than Oracle) in all benchmarks by querying fewer, highly informative labels. CAMS
not only achieves the lowest cumulative loss but also has the sharpest cumulative loss decreasing rate
to converge to the optimal status by only increasing a few query cost on all benchmarks. Moreover, it
takes CAMS fewer than 10 and 20 queries, respectively, to outperform Oracle on VERTEBRAL and
HIV benchmarks. In particular, on the VERTEBRAL benchmark, CAMS has a 20% margin over
the best baseline in query cost, and it achieves this despite 11 of the 17 experts giving malicious or
random advice.

Further remarks. In addition to the main results reported in Fig. ??, our empirical results demon-
strate the remarkable performance of CAMS as follows: (1) In a mixture of experts environment,
CAMS converges to the best policy and outperforms all others (Appendix ??); (2) In a complete
malicious experts environment, CAMS can efficiently recover from malicious advice and approach
the performance of the best classifier (Appendix ??); (3) In a non-contextual (no experts) environment,
CAMS has approximately equal performance as Model Picker to reach the best classifier effectively
(Appendix ??); (4) In a complete sub-optimal expert environment, a variant of the CAMS algorithm,
namely CAMS-MAX, which deterministically picks the most probable policy and selects the most
probable model, outperforms CAMS-Random-Policy, which randomly samples a policy and selects
the most probable model (Appendix ?? & Appendix ??). However, CAMS-MAX at most approaches
the performance of the best policy. In contrast, perhaps surprisingly, CAMS is able to outperform
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