ACTIVE POLICY IMPROVEMENT FROM MULTIPLE BLACKBOX ORACLES

Xuefeng Liu^{1*} Takuma Yoneda^{2*} Chaoqi Wang^{1*} Matthew R. Walter² Yuxin Chen¹ ² Toyota Technological Institute at Chicago (TTIC) ¹ University of Chicago

Motivation

- Reinforcement learning (RL) tends to be highly sample inefficient
- Imitation learning improves the sample efficiency of RL
- In real-world scenarios, accessing an optimal oracle can be costly or even not possible
- However, one often has access to multiple *suboptimal* oracles
- Goal: Learning from black-box oracles by combining their state-wise expertise

How can an agent actively learn from **multiple black-box oracles** by taking advantage of their complementary expertise to learn a better policy in a *sample-efficient* manner?

Learning from Multiple Oracles

• Single-best oracle: $\pi^{\star} \doteq \arg \max_{\pi \in \Pi} V^{\pi}(d_0)$

- weak baseline that does not consider the state-wise optimality of different oracles

- Max-following policy: $\pi^{\bullet}(a \mid s) \doteq \pi^{k^*}(a \mid s), \quad k^* \doteq \arg \max_{k \in [K]} V^k(s)$ - a greedy policy that follows the best oracle in any state
- \checkmark Max-aggregation policy: $\pi^{\max}(a|s) \doteq \delta_{a=a^{\star}}$,

$$a^{\star} = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} A^{f^{\max}}(s, a), f^{\max}(s_t) \doteq \underset{k \in [K]}{\max} V^k(s),$$
$$A^{f^{\max}}(s, a) = r(s, a) + \mathbb{E}_{s' \sim \mathcal{P}|s, a}[f^{\max}(s')] - f^{\max}(s)$$

Max-aggregation in Online Learning Setting

- Black-box oracle
- × true value function of each oracle is unknown to the learner
- \checkmark reduce IL algorithm to online learning
- We adapt the online loss

$$\ell_{n}\left(\pi;\lambda\right) \doteq \underbrace{-(1-\lambda)H\mathbb{E}_{s\sim d^{\pi_{n}}}\left[A_{\lambda}^{f^{\max},\pi}\left(s,\pi\right)\right]}_{\text{Imitation Learning Loss}} \underbrace{-\lambda\mathbb{E}_{s\sim d_{0}}\left[A_{\lambda}^{f^{\max},\pi}\left(s,\pi\right)\right]}_{\text{Reinforcement Learning Loss}}$$

• Empirical estimate of the $\ell_n(\pi, \lambda)$ gradient

$$\nabla \hat{\ell}_n\left(\pi_n;\lambda\right) = -H\mathbb{E}_{s \sim d^{\pi_n}, a \sim \pi_n(\cdot|s)} \left[\nabla \log \pi_n\left(a|s\right) A_{\lambda}^{\hat{f}^{\max}, \pi_n}\left(s, a\right)\right]$$

- may select suboptimal oracle policy due to bias in the value function approximator \widehat{f}^{\max} for $\ell_n(\pi, \lambda)$

Algorithmic Characteristics

Algorithm	Criterion	Online	Stateful	Active	Interactive	Multiple oracles	Sample efficient
Behavioral cloning	IL	×	\checkmark	×	×	×	_
PPO with GAE	RL	\checkmark	\checkmark	×	×	Х	×
AggreVaTeD	IL	\checkmark	\checkmark	×	\checkmark	Х	_
MAMBA	IL + RL	\checkmark	\checkmark	×	\checkmark	\checkmark	×
CAMS	Model Selection	\checkmark	×	\checkmark	×	\checkmark	\checkmark
MAPS (ours)	IL + RL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Theoretical Guarantees

• The sample complexity table for identifying the best oracle per state

Selection strategy						
Uniform (MAMBA)	(
APS (MAPS)	\mathcal{O}					
ASE (MAPS-SE)	\mathcal{O}					

Sample complexity $\mathcal{O}\left(\left(\sum_{i} \frac{KH^2}{\Delta_i^2}\right) \log\left(\frac{K}{\delta}\right)\right)$ $\left(K + \left(\sum_{i} \frac{H^2}{\Delta_i^2}\right) \log\left(\frac{K}{\delta}\right)\right)$ $K + \left(\sum_{i} \frac{H^2}{\Lambda^2}\right) \log \left(\frac{1}{\Lambda^2}\right)$

Experimental Results

• MAPS (APS) Performance

• Effect of Active Policy Selection

• MAPS-SE (ASE) Performance

(2)

(3)

