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Reinforcement learning (RL) tends to be highly sample inefficient
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— Active state exploration (ASE
— weak baseline that does not consider the state-wise optimality of different oracles P [ )
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— a greedy policy that follows the best oracle in any state AlgOI'l thm Details
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6 Select k, via Equation (2).

7 Switch to 7% to roll-out and collect data D,,.

8: Update the estimate of V() with D,,.

9: Roll-in 7, for full H-horizon to collect data D/,

10: Compute gradient estimator g, of V4, (m,, A) (1) using D",
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X true value function of each oracle is unknown to the learner
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