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Experimental Setup

Local Interpretable Explanations (LIME)

Motivation: LHC Trigger System

e Toy dataset

e Uses local interpretable surrogate models to explain individual predictions of black box models. ~ randomly generated by make_classification of scikit-learn,

e Does not take into account cost of each feature. — cost function ¢ created from a uniform distribution in the interval |0, 10].

e CMS Open Data
— publicly available; ct. CERN Open Data Portal, 2017.

Problem Statement

Fraction of Events in Both Trigger Label Categories

e Data filtering algorithms (trigger algorithms) targeted at discovery sciences
must operate at the level of 1 part in 10° due to resource constraints.

e Design relies heavily on prior knowledge of the feature space being probed.

e redundant labeling schemes and cost-ineffective algorithm execution.

Data Driven, Explainable Triggers

e Refine the trigger and data filtering algorithms at future physics facilities.

e [ach trigger algorithm incurs a latency at runtime. Thus, finding the most
efficient set of trigeger algorithms at runtime is crucial for a real-time
trigger system.
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Figure 1: An example cost-effective explanation of an event.

Example of Non-interpretable LHC Trigger Recommendation

Only applying the b-jet
trigger to an event such as
H — bb, rather than also
applying a threshold di-jet
trigger.

With an interpretible algorithm we
hope to gain information that this
decision was made because the most
important physics feature for this
event is the b-jet tagging value.

Our work extends LIME and can be viewed as a sparsity-based locally interpretable
model, where we seek a minimal-cost explanation for the LHC trigger outputs.

e Given a dataset X € R"*P (n collision events; each event is described by p numerical features),
a set of labels T’ (known as ¢riggers), and an outcome matrix y = {0, 1}"*71 (i.e. triggers each
event satisfies).

e cost function c(f;): the cost of using feature f; to predict the outcome of an event.

e Goal: Identity the most cost-efficient subset of features that enables us to maxrimize coverage
of X in the trained model while using selected features to make predictions.

Our Approach: Cost-effective (CE) LIME

LIME with Elastic Net

e Recap: LIME trains a sparse model with a dataset of perturbations of x. The trained weight
vector of this model describes the importance of each feature.

e We adopt elastic net as a general formulation (with the LASSO and ridge regressions being
special cases), which trades off model interpretability (sparsity) and accuracy:

p p
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Cost Effective Elastic Net

To obtain a B which is both sparse and cost efficient, we propose adding a coefficient of ¢(f;), which
is the cost of feature 4, to each respective term |5;| and |5;|? in the elastic net penalty:
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Submodular Pick

e A model-wide, global explanation similar to the event specific explanation is desired.

e LIME with Submodular Pick (SP-LIME) creates an importance vector I, which gives us a total
ordering of all features F' that enables us to select an optimal subset of F'.

e We call this method of using a modified SP-LIME with a cost-effective elastic net CE-LIME.

— 9 different triggers with ran-
domized cost of features in ev-
ery trial, with the costs being
uniformly distributed in |0, 10].
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— the figure shows the fractional e
overlap between features which .o
share trigger labels and trigger
label categories. The large frac-
tional overlap emphasises the
potential for these algorithms to
be optimized.
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Experimental Results
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