PREFERENCE-BASED BATCH AND SEQUENTIAL TEACHING: TOWARDS A UNIFIED VIEW OF MODELS

Farnam Mansourif

fMax Planck Institute for Software Systems (MPI-SWS)

Algorithmic Teaching

Yuxin Chen?

Ara Vartanian*

Our Contributions

Teacher

teacher selects 2+, and provides ¢, h™ (x¢)

| > ®

learner updates /1

< |

teacher receives h; as feedback
Canonical Example
Discrete points on a line h*(z) =0 h*(r) =1
X ={1,2,...,n} 1 2 0, - n

Threshold classifier h(z) = 1 iff x > 6}, where 0, € {1,2,...,n}

Complexity of passive learning: O(n); active learning: O(log(n)); teaching: 2.

Interaction Protocol

1: learner’s initial version space is Hy = H and learner starts from hy € ‘H
2. fort=1,2,3,... do

teacher provides z; = (x¢, h*(x¢))

learner updates H; = H; 1 N H({z:}); picks hy € H;

teacher receives h; as feedback from the learner

teaching process terminates
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4
D:
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if h; = h* then

Complexity Measures

Notions Description
TD classical worst-case teaching complexity
RTD notion of TD when teaching a collaborative learner
NCTD strongest notion of TD that respects collusion-freeness
Local-PBTD teaching complexity of a weak sequential model

Research Questions

e [s there a framework unifying different notions of TD’s?

e Can we identify models with teaching complexity linear in

the Vapnik—Chervonenkis dimension VCD?

A novel framework capturing the teaching process via preference functions X, where each function
o € X induces a teacher-learner pair. Our main results are as follows:

e We show that existing batch models correspond to spe-

cific families of o functions in our framework.

e We identify sequential models with teaching complexity

linear in the VCD of the hypothesis class.

e We provide a constructive procedure to find o functions

with low teaching complexity:.

Table 1: Main Resuls

Families Zconst Zglobal ngs ZIocaI ZIvs
Reduction TD RTD NCTD |Local-PBTD —
Complexity Results| — | O(VCD?*) O(VCD?) | O(VCD?) | O(VCD)
GK95 [Zil+1 1] KSZ19] [Che+18] —

Learner’s Preference Function

A preference function o : H x 27t x H — R models how a learner navigates in the version space as it
receives teaching examples (line 4 of Interaction Protocol):

h; € argmino(h'; Hy, hy ).
h/EHt

Teaching Complexity >-TD

Teaching Dimension for a Preference Function

Fix &, H, and learner’s initial hypothesis hy. Let Dy 4 5,(0, h*) be the worst-case optimal cost for
steering the learner from hg to hA* for some preference function o. Then, the teaching dimension w.r.t.
o is defined as the worst-case optimal cost for teaching any target h*:

TDX,”H,hO(U) = H}L@X D,'y’q.[,ho(ﬂ, h*>

Teaching Dimension for a Family of Preference Functions

We define the teaching dimension for a family X as the teaching dimension w.r.t. the best o € X:

Z‘TDX,H,hO = Igneizrjl TDX,”H,hO(O')-

Collusion-free Preference Functions

Definition 1 (Collusion-free teaching

GM9I6

(batch setting)) A learner outputting

hypothesis h will not change its output if given additional information consistent with h.

Definition 2 (Collusion-free preference (this paper)) If h is the only hypothesis in the
most preferred set defined by o, then the learner will stay at h if additional information received

by the learner is consistent with h.

We study preference functions that are collusion-free as per Definition 2:

Yicr = {0 | o is collusion-free}.
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Preference-based Teaching Models

e Batch models:

- Yieonst = {0 € Xcr | Jce R, st. VA, H, h,o(h'; H, h) = ¢}
- Zglobal = {O‘ S ZCF | = g H — R, s.t. Vh/, H, h, O'(h,; H, h) — g(h/)}
- Ses={0€XNcr|Tg:Hx 2" SR, st. VW, H h,o(W; H,h) = g(h', H)}

e Sequential models:

- Yocal = {0 €Xcr|Fg:HxH—->R, st. VA, H h,o(h'; H,h) = g(h', h)}
- Y ={0elcr|Tg:Hx2"xH >R, st. Vi, H h,o(h';H,h) = g(h',H,h)}

e Teaching sequences with different preference functions for the Warmuth hypothesis class:

h . X1 o X3 T4 Ts Sconst = Sglobal ngs Slocal Slvs
7 I 1T 0 0 0 [ (z1,22,24) (x1,22) | (x1) (1)
ho 0 1 1 0 0 | (22,2525 (w2, 73) | (73) (w2)
ha 0 0 1 1 0 || (z1,23 24) (z3,24) | (3,24) | (w3)
ha 0 0 0 1 1 | (xg,x4,25) (Ta,75) | (w5,74) | (74)
hs 1 0 0 0 1 | (z1,23 25) (21,25) | (x5) (25)
he 1 1 0 1 0 | (21,22, 24) (z2,24) | (w4) (23)
h- 0 1 1 0 1 | (z2,235) (z3,25) | (23,25) | (24)
ha 1 0 1 1 0 | (z1,23 24) (z1,24) | (24,73) | (25)
ho 0 1 0 1 1 || (zo,z4,25) (22, 25) | (w4,25) | (1)
h1o 1 0 1 0 1 (r1,73,T5) (z1,23) | (25,23) | (22)

(a) The Warmuth hypothesis class and the corresponding teaching sequences (denoted by S).

h' \ Vhi e H h\R' \ hy ho hs ha hs hg h7 hs hg hjg
Uconst(h/; *y ) O O'|Oca|(h/; ',h - h]_) O 2 4 4 2 1 3 3 3 3
/
Oglobal (5, *)

(b) oconst and o giobal (¢) Olocal representing the Hamming distance between h’ and h.

Main Results

e Reduction to existing notions of TD’s (see Table 1).

e Proving Y- TDy 25, = O(VCD(H, X )) via a constructive procedure.

Key Ideas for Constructing o € ¥,¢ with TDy 3, ,(c) = O(VCD)
e Introducing a new notion of compact distinguishable set.
e Partitioning the hypothesis class into subsets of hypothesis classes with lower VCD using the compact distinguishable set.

e Recursively applying the partitioning procedure to create the preference function o.

Discussions
e Designing o functions for addressing the open question of whether RTD is linear in VCD.

e Designing teaching algorithms for sequential models.
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