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Motivating Applications

Citizen science, crowdsourcing services, medical diagnosis

Illustrative Example Baird Sparrow

Field Guide for Naturalists

e.g., teaching a novice
to classify bird images
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Label for Baird Sparrow

Label for Chipping Sparrow
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A Chipping Sparrow

Existing Work
Label-based Machine Teaching

[Goldman & Kearns 1995; Zhu 2013; Singla et al. 2014; Johns et al. 2015; Chen et al. 2016; Liu et al. 2017; ...]

Label only based approaches may perform badly if
hypotheses is highly structured

Our Approach

Explanation-based Machine Teaching

Student's ability to learn a new concept can be greatly improved by providing
them with clear and interpretable explanations from a knowledgeable teacher
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Teaching image set: {(x, v, e)}im
Xi image
yi label for x;
ek importance of fi selected from up to n
interpretable features (fi, ..., fin)
A: selected teaching set up to t

Hypothesis space: H
Fachhe H: xi— vy
It also tells how important each feature
is in predicting its label

Learner’s posterior at t

Normalization factor

Likelihood of observations

Learner’s progress, measured by the

expected classification error
E[err(h) | A = 2nP(h | A) err(h)

Our goal is to find the optimal teaching set
achieving expected error at most €

A* = argmin |A|, s.t. Elerr(h) | A] <e€
AeT
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Machine Teaching via Feature Feedback

Problem Formulation

Bayesian model of the learners
Learner’s Belief is a prob. distribution over H
It is updated upon receiving teaching image
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V(h | A)): Unnormalized posterior at t

h's estimate of the
importance of
feature k for image i
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The Greedy Teaching Algorithm

‘nput Teaching image set {(x, y, €)}1m hypotheses H;
likelihood params a, f3; prior P(h); tolerance €

Output  Selected images to teach, A

Start A« g;
i k* = argmin ik 2n V(h |Au {(X vi ex)}) err(h);
A Au {(Xi*, Yik, ei*k*)};

ShV(h | A) err(h) < P(h")e

Loop

Until

Thm: The worst-case cost of our greedy strategy achieving error € is within a logarithmic factor of the worst-case
cost of the optimal algorithm achieving error of at least P(h*)e/2

Datasets
 Real human participants tested on two synthetic datasets: hard and easy
o Each with 128 images of two balanced classes: Jupiter and Mars
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(a) Mars Hard 1 (b) Mars Hard 2 (c) Jupiter Hard 1 (d) Jupiter Hard 2
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(a) Mars Easy 1 (b) Mars Easy 2 (c) Jupiter Easy 1 (d) Jupiter Easy 2

Decision Rule

« Predictive features: parts indicated by arrows
o Hard Mars: blue top, square middle and thick base
Jupiter: any other combination

Mars: vellow top, circle middle and large ellipse near bottom
Jupiter: any other combination
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Baseline
Random: Random images with no explanations
Random-feature: Random images with random explanations

STRICT: Label-based greedy approach
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Conclusion
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With explanation based machine teaching, students achieve
o Better accuracy

« Faster question answering at test time




