

Understanding the Effect of Bias in Deep Anomaly Detection

Ziyu Ye

Yuxin Chen Haitao Zheng

University of Chicago

Motivation: Bias from Additional Labeled Anomalies

Existing approaches for Anomaly Detection (AD)

A Counter-Intuitive Example

Training with additional labeled anomalies can induce disastrous harmful bias.

Fig 1. Original 3D Space

Fig 2. 2D Latent Space (Semi-Supervised AD)

Fig 3. 2D Latent Space (Supervised AD)

Research Question

- Will unseen anomalies suffer from bias due to additional labeled data in training?
- If so, how can we estimate the bias? What is the impact of the bias?

[Clarification] Bias in AD ≠ Bias in Supervised Learning

Task Type	Distribution Shift	Known Target Distribution	Known Target Label Set
Imbalanced Classification [Johnson and Khoshgoftaar, 2019]	No	N/A	N/A
Closed Set Domain Adaptation [Saenko et al., 2010]	Yes	Yes	Yes
Open Set Domain Adaptation Panareda Busto and Gall 2017	Yes	Yes	No
Anomaly Detection Chalapathy and Chawla, 2019	Yes	No	No

Table 1: Comparison of anomaly detection tasks with other relevant classification tasks.

2 Define Bias: an ERM Framework

Proposition 1. Given two scoring functions s, s' and a target FPR q, the relative scoring bias is $\xi(s, s') = F_a(F_0^{-1}(q)) - F'_a(F_0'^{-1}(q))$.

Anomaly Score

3 Estimate Bias: a PAC Analysis

Theorem 3. Assume that $F_{\alpha}, F'_{\alpha}, F'_{0}, F''_{0}$ are Lipschitz continuous with Lipschitz constant $\ell_{\alpha}, \ell'_{\alpha}, \ell'_{0}, \ell''_{0}$, respectively. Let α be the fraction of abnormal data from the mixture distribution. Then, we, α least $1 - \delta$, with

$$n = \mathcal{O}\left(\frac{1}{\alpha^2 \epsilon^2} \log \frac{1}{\delta}\right)$$

the empirical relative scoring bias satisfies $|\hat{\xi} - \xi| \le \epsilon$

The estimation error ϵ decreases at the rate of

4

Characterize Bias: Empirical Experiments

Takeaways and Future Directions

Additional labeled data in AD poses a *hidden threat* for model practitioners.

$Data ext{-}Based$ **Debiasing Strategy**

- Using active learning to obtain representative anomaly labels.
- Leveraging synthetic examples.

Model-Based Debiasing Strategy

 Using robust model design (e.g., ensembles of semi-supervised and supervised models).

Fig 4. Data distribution of AD problem. The blue is the normal, others are different *subtypes* of anomalies