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[Preliminaries] Hessian, Jacobian, Fisher Info and Memorization R e i
N Cosine similarity distribution of per sample gradient to the linear interpolation direction from Init-S to Sol-F (a is the interpolation coefficient)
Hessian and the Loss Curvature H(0) = V2 L(6).
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. Sparse scratch is weaker at memorization and requires more information in learning.
Long-Tail Hypothesis of Memorization Memorization of data labels is necessary to achieve good

. Next steps: closing the gap for sparse scratch by regularization or data scheduling.
generalization on long-tailed data distribution (Feldman, 2020).

[Train Set] Class Distribution for Data that Sol-$ and Sol-F Has Disagreement


https://github.com/ZIYU-DEEP/Generalization-and-Memorization-in-Sparse-Training

