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Motivating Applications

Are you having trouble optimizing your scientific experiments?
[s it because your input space is too complex?

Is the representation learned losing too much information?
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Figure 1: Left: Robotic telescope; Right: Dark Energy Survey

Latent Space Optimization

latent space mapping g objective mapping h
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e A lalent space mapping g to project input X to a latent space Z
e An objective mapping h : Z — R such that f(z) ~ h(g(x))

e h: Z — R often modeled by Gaussian Processes

e [Lu+18] train a VAE during sequential optimization

e [TDHL20] periodically retrain the VAE to improve latent space

The Collision Effect

Non-regularized Latent Space
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Dynamically Regularized Latent Space
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Fig. 2: Collision on Feynman Dataset

Demonstration of the collision effect: the regularized and non-regularized
1D latent space learned on the Feynman 6D dataset.
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The Collision Penalty

For w;,v; € X, y; = f(x;) + €, y; = f(x;) + € are the corresponding observations, and z; = g(x;),
zj = g(a:j) are the latent space representations. We define the collision penalty as

pij = max(Ay; — yj| — |z — 2], 0) (1)

A is a penalty parameter that controls the smoothness of the target function A : Z2 — R.

Optimization-Aware Dynamic Weighting

For any pair ((7}, 24, y;), (;, 2;,¥;)) in a batch of observation pairs Dy we define the importance-
wetghted penalty function as

oV (Wity;)
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Pij = Dij -

v is tmportance weight that controls the aggressiveness of the weighting strategy:.

Pair Loss for Kernel Learning

Combining the collision penalty and regression loss of GP, we define the pair loss function L as

1

L
|| Dy |2

Mt, Kt, Dt) — Z (GPKt(Mt(IZ)) _ yZ)Q + (GPKt(Mt(x])) _ y])2 + pﬁZjv (3)
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o GPry(My(x;)): GP’s posterior mean on x; with kernel Ky and neural network My at timestep t.

e p: the regularization weight.

CoFLO: Collision-Free Latent Space Optimization
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CoFLO concurrently feeds the pair-wise input into the same network to calculate the collision penalty,
then combines it with the square loss of GP to calculate the pair loss function.

Algorithmic Details

Algorithm 1 Collision-Regularized Latent Space Optimization (CoFLO)

1: Input: Regularization weight p (cf. Equation 3), penalty parameter A (ct. Equation 1), retrain

interval 7', importance weight parameter v (cf. Equation 2), neural network Mj, base kernel
Ko, prior mean /1o, total time steps 1;

2: fort =1toT do
3: 2y < argmax (M (z)) > maximize acquisition function
reD

4: y¢ < evaluation on x; > update observation

5: ift =0 (mod 7T') then

6: M1, K11 < retrain M; and K; with the pair loss function L, x ~(M;, K¢, D¢) as
defined in equation 3 > periodical retrain

7 end if

8: end for

9: Output: max y

Experiment Results
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Remarks

e A simple plugin amendment to penalize collisions in the latent space, with
optimization-aware dynamic weighting for adjusting the collision penalty.

e Fixtensive empirical study on four synthetic and real-world datasets.

* This work was supported by the Center for Data and Computing at the University
of Chicago via a JTFI AI + Science Grant.



