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Motivating Applications

Are you having trouble optimizing your scientific experiments?
[s it because your objective is too complex?

[s the global model failing to capture useful locality?
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Bayesian Optimization on Partition(s)
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Figure 3: Bayesian Optimization on Partition(s)

Previous methods rely on heuristics that normally introduce additional complexity to the surrogate models, which
could incur challenges in fine-tuning the hyperparameters of the heuristics.

Algorithmic Details

x € R? operational parameters
z € R* learned representation
y € RP performance metric
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Figure 2: Deep Kernel Learning (DKL)
o A latent space mapping g to project input X to a latent space Z
e An objective mapping h : Z — R such that f(x) ~ h(g(x))
e h: Z — R often modeled by Gaussian Processes

e [ZNC22] initialize the latent space mapping with the encoder of the pre-train auto encoder

e [TDHL20] periodically retrain the auto encoder to improve the latent space.

Global Estimation with DKL

Algorithm 1 Bayesian Optimization with Adaptive Level-Set Estimation (BALLET)

1: Imput:Search space X, initial observation D, horizon T;

2: fort =1%0T do

3: Learn the global estimation GPy, ;: 05, ¢ <— argmaxy, — log(P(y¢|X¢-1,05,))
Partition by region of interest filtering: X; < {x € X| UCBy, 1(x) > LCBy, t max}
Partition the historical observation: D = {(x,y) € D|x € X:}.
Learn the superlevel-set GP: GP; 1 0, < arg maxg, — log(P(y¢|X¢,07)

Optimize the superlevel-set acquisition function: X1 < arg max « f(x))
xeX

N R

8: Update D: D¢y < D U {(xt+1:- yt+1)}
9: Output: mMax ys

In contrast to existing work, we consider a non-parametric model for partitioning the search space, which has
shown remarkable performance in real-world tasks while having few hyperparameters to maintain.

Bayesian Optimization with Adaptive Level-Set Estimation

e Learn the global partitioning on X with Deep Kernel Learning (DKL) [Wil+16] due to its scalability
e Underlying global function f, = f is assumed to be drawn from a global Gaussian process.
e Maximizing the negative log-likelihood (NLL) — log(P(y:| X, 0y,+)) [RWO03].

e Sample unlabeled dataset from X to pre-trained an Auto-Encoder and use the parameters of its encoder to
initialize the neural network ¢ [FCT20].

Regions of Interest Filtering

With the confidence interval of the global GP;,, we could define the upper confidence bound UCB;, (x) and lower
confidence bound LCBy,(x) We attain the region of interest.

X = {z € X| UCBy,(x) > LCBy, nas } (1)

e The global GPy, enables a filtering on X to locate the region of interest X.
e It is desired for X that with high probability, x* = arg max,x f(x) is contained by X,

o Also |X| < |X], then f, the objective function defined on X is therefore of reduced complexity.
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The algorithm filters the search space X using the UCB and LCB estimated by a global GP. Then it feeds
another GP the regions of interest of the search space X and the filtered historical observations (X¢, Y;). Global
optimization at each iteration is conducted on the adaptive partition using this GP and its acquisition function.

Experiment Results
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