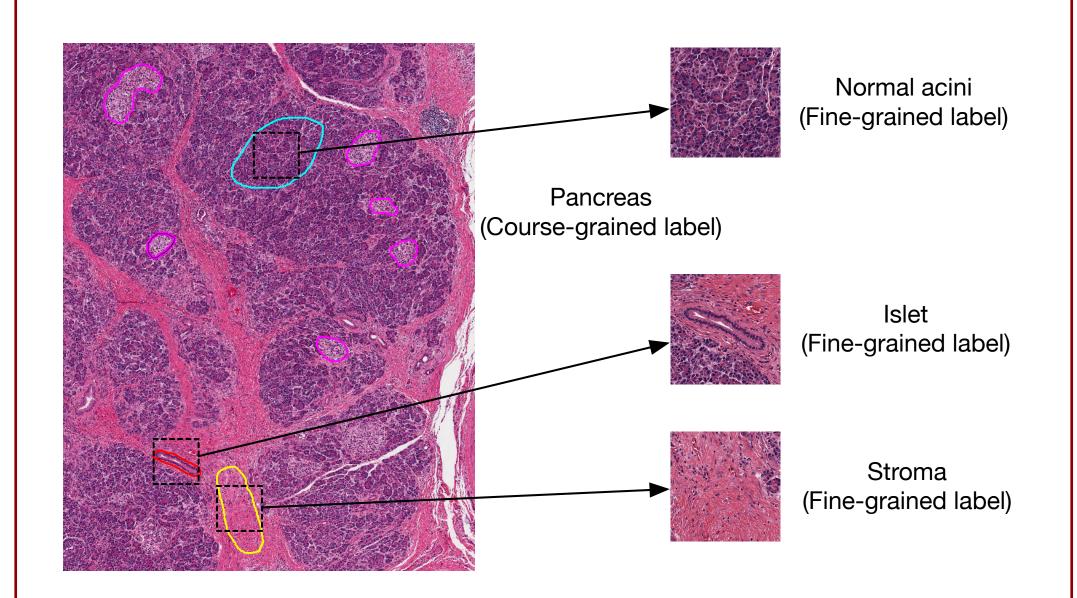
Enhancing Instance-level Image Classification with Set-level Labels

Renyu Zhang, Aly A. Khan, Yuxin Chen, Robert L. Grossman

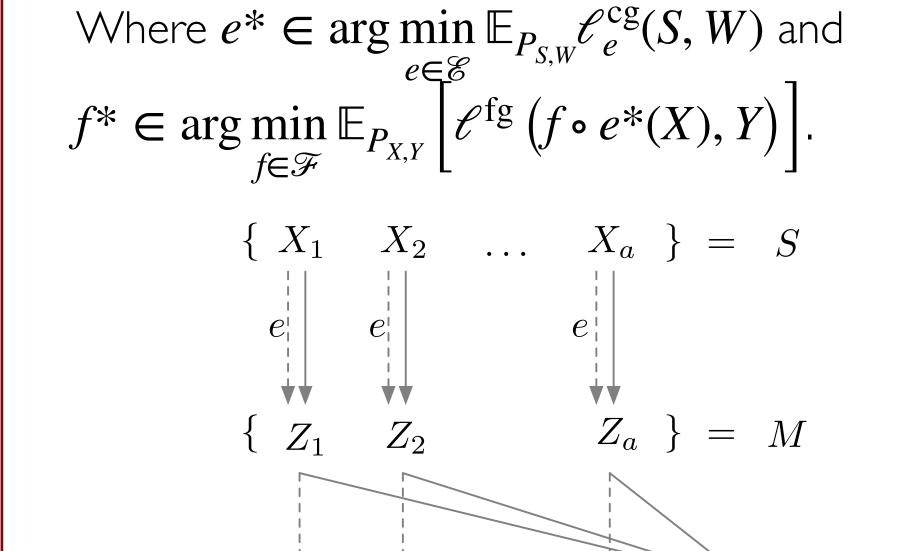


Summary

- FACILE: an supervised learning algorithm that leverage set-level labels to improve instance-level image classification.
- A theoretical analysis of the proposed method, including recognition of conditions for fast excess risk.
- Experimental studies on two distinct categories of datasets: natural image datasets and histopathology image datasets.

Motivation From coarse-grained set-level labels to instance-level labels Most frequent superclass set label household furniture reptiles input set CIFAR-I 00 TCGA-LUAD TCGA-COAD MUS NORM STR TUM

Whole slide image (WSI) examples from TCGA and patches from NCT dataset are in the lower row.


Hierarchy of course- and fine-grained labels for histopathology images.

Notation

- ► Coarse-grained dataset: $\mathcal{D}_{m}^{cg} = \{(s_i, w_i)\}_{i=1}^{m}$ ► s_i : set of instances $\{x_i\}_{i=1}^{a}$
- ► w_i: set-level coarse-grained label
- $ightharpoonup \mathcal{E}^{\mathrm{fg}}$: loss on fine-grained labels.
- Fine-grained dataset $\mathcal{D}_n^{fg} = \{(x_i, y_i)\}_{i=1}^n$
- y_i : set-level coarse-grained labels.
- Instance feature maps $e \in \mathcal{E}$, set-input functions $g \in \mathcal{G}$, and fine-grained label predictors $f \in \mathcal{F}$. The corresponding set-input feature map of an instance feature map e is defined as ϕ^e .

Problem Statement

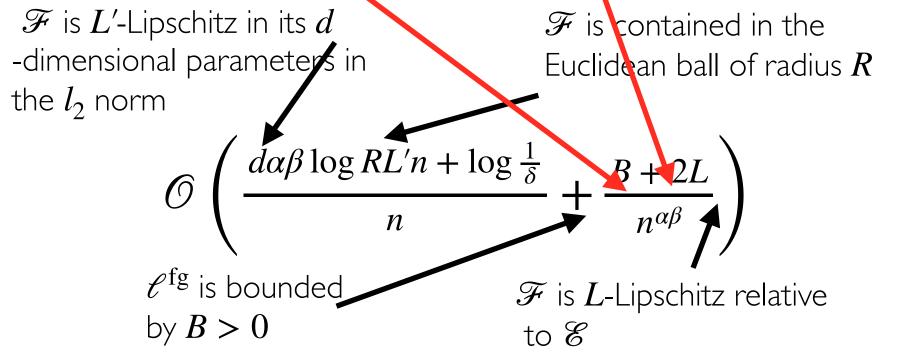
Our primary goal is to learn an instance-level predictor $\hat{f} \circ \hat{e}$ that achieves low **excess risk**: $\mathbb{E}_{P_{X,Y}} \left[\ell^{\mathrm{fg}}(\hat{f} \circ \hat{e}(X), Y) - \ell^{\mathrm{fg}} \left(f^* \circ e^*(X), Y \right) \right]$

Schema of the model. The dotted lines represent the flow of fine-grained data, and the solid lines denote the flow of coarse-grained labels

Theoretical Analysis

We denote the underlying distribution of $\mathscr{D}_{m}^{\operatorname{cg}}$ as $P_{S,W}$ and the underlying distribution of $\mathscr{D}_{n}^{\operatorname{fg}}$ as $P_{X,Y}$. We assume the joint distribution of Z and Y is $P_{Z,Y}$.

Definition I. (Coarse-grained learning; pretraining) Let $\operatorname{Rate}_m(\ell^{\operatorname{cg}}, P_{S,W}, \mathscr{E})$ be the excess risk rate of $\mathscr{A}_m(\ell^{\operatorname{cg}}, P_{S,W}, \mathscr{E})$.


Definition 2. (Fine-grained learning; downstream task learning) Let $\operatorname{Rate}_n(\ell^{\operatorname{fg}}, P_{Z,Y}, \mathscr{F})$ be the excess risk rate of $\mathscr{A}_n(\ell^{\operatorname{fg}}, P_{Z,Y}, \mathscr{F})$.

Definition 3. We say that f is L-Lipschitz relative to \mathscr{E} if for all $s \in \mathscr{S}, x \in s, y \in \mathscr{Y}$, and $e, e' \in \mathscr{E}$, $|\mathscr{C}^{\mathrm{fg}}(f \circ e(x), y) - \mathscr{C}^{\mathrm{fg}}(f \circ e'(x), y)| \leq L\mathscr{C}^{\mathrm{cg}}(g_e \circ \phi^e(s), g_{e'} \circ \phi^{e'}(s))$ The function class \mathscr{F} is L-Lipschitz relative to \mathscr{E} , if every $f \in \mathscr{F}$ is L-Lipschitz relative to \mathscr{E} .

Theorem 4. Assume that

 $\mathrm{Rate}_m\left(\mathcal{E}^{\mathrm{cg}},P_{S,W},\mathcal{E}\right)=\mathcal{O}\left(1/m^{\alpha}\right)$ and growth rate $m=\Omega\left(n^{\beta}\right)$,

we obtain excess risk bound with probability at least $1-\delta$ by

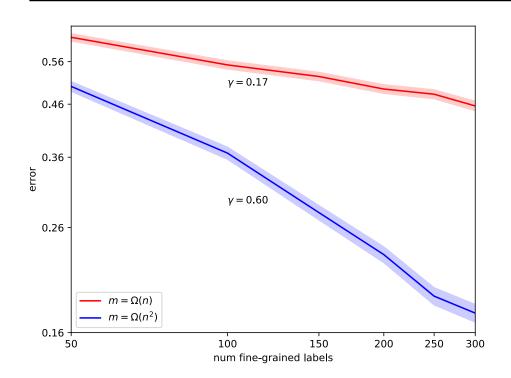
Conditions of fast excess risk rate (l.e., $\alpha\beta \geq 1$):

(1) Larger α : better generalization performance on the pretraining task.

(2) Larger β : larger growth rate of coarse-grained labels.

Experiments: CIFAR-100

Pretrain with unique superclass number


- Input-sets: we generate input sets by sampling between 6 and 10 images from CIFAR-100 training data
- ▶ Targets: the unique superclass number of the input sets
- Downstream task: few-shot testing on 100 classes of test set
- Fine-grained learning: nearest centroid (NC); logistic regression (LR); ridge classifier (RC)

pretrain method	NC	LR	RC
$\overline{\hspace{1cm}}$ SimCLR	76.07 ± 0.97	75.88 ± 1.01	75.50 ± 1.02
Sim Siam	78.15 ± 0.93	79.44 ± 0.92	79.03 ± 0.95
FSP-Patch	N/A	N/A	N/A
FACILE-SupCon	N/A	N/A	N/A
FACILE-FSP	86.25 ± 0.79	85.42 ± 0.82	85.84 ± 0.81

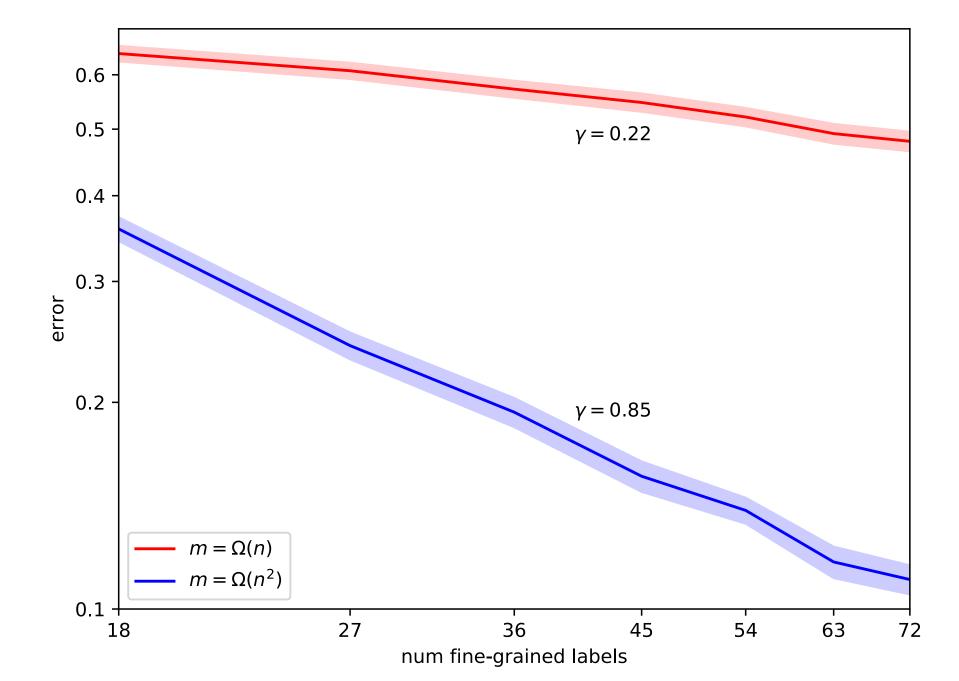
Pretrain with Most Frequent Superclass

Targets: the most frequent superclass of the input sets

pretrain method	NC	LR	RC
SimCLR	75.91 ± 1.00	75.82 ± 1.01	75.91 ± 1.02
Sim Siam	78.80 ± 0.93	79.44 ± 0.95	79.43 ± 0.93
FSP-Patch	73.21 ± 0.97	73.92 ± 0.98	73.40 ± 0.98
FACILE-SupCon	79.54 ± 0.92	79.54 ± 0.96	79.12 ± 0.95
FACILE-FSP	82.04 ± 0.84	81.70 ± 0.91	81.75 ± 0.90

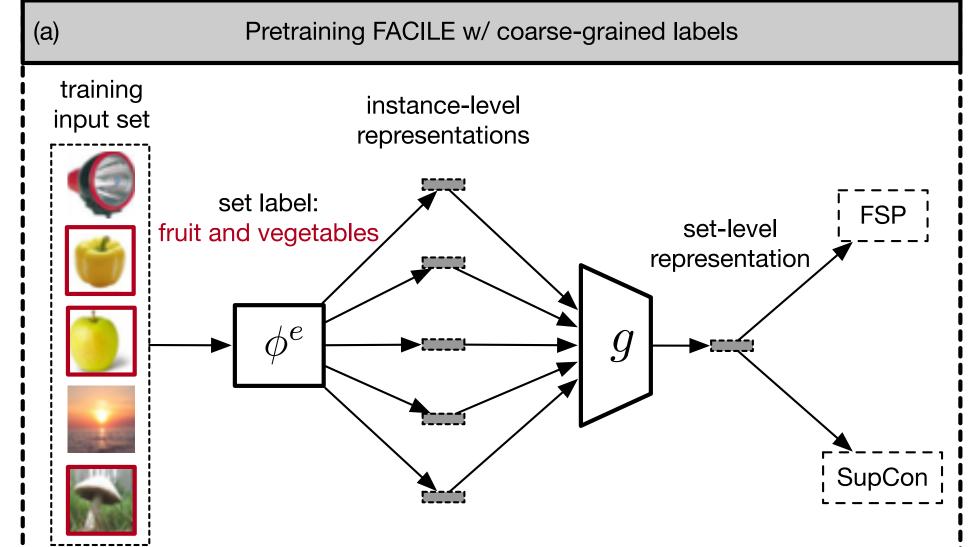
We can improve excess risk by increasing growth rate of coarsegrained labels and maintain log-linear relationship.

Generalization error (with two growth rates) of FACILE-FSP on CIFAR-100 test dataset as a function of the number of coarse-grained labels m.

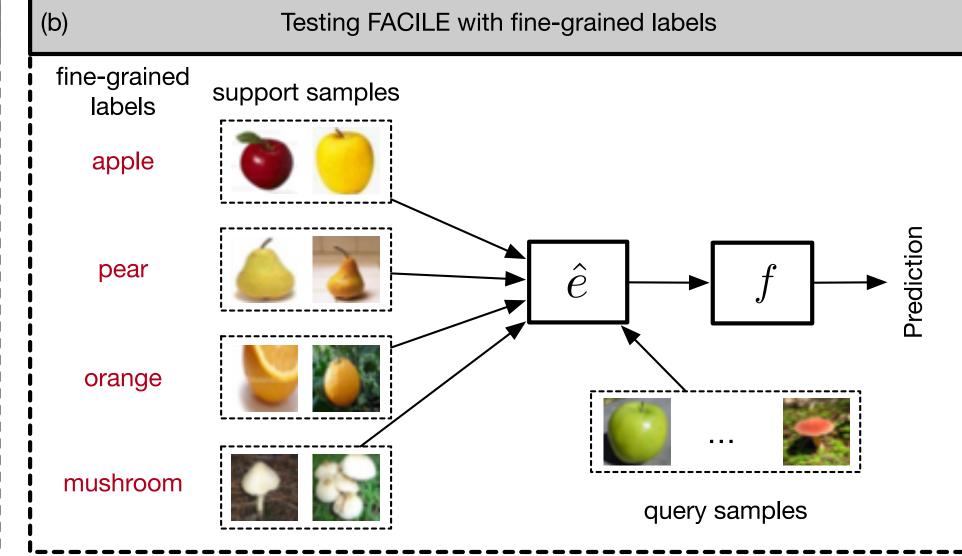

Evaluation on LC, PAIP, and NCT We first fine-tune fully-connected layer appended to ViT-B/14 from DINO V2 on TCGA patches with size

ViT-B/14 from DINO V2 on TCGA patches with size 224×224 at 20× magnification. After the models are trained, we test the feature map in these models on LC, PAIP, and NCT.

Experiments: WSIs


INC.	Γ	nC nC	LN+LA	$NC+LA$
1-sho	ot 5-way test on	LC dataset		
44.82 ± 1.41	47.51 ± 1.39	47.63 ± 1.38	47.36 ± 1.39	48.88 ± 1.44
48.79 ± 1.37	49.43 ± 1.35	48.43 ± 1.36	49.38 ± 1.34	49.50 ± 1.34
50.47 ± 1.31	50.52 ± 1.33	50.44 ± 1.32	51.66 ± 1.32	51.78 ± 1.38
49.73 ± 1.41	53.59 ± 1.38	53.07 ± 1.41	51.79 ± 1.40	51.27 ± 1.43
$\boldsymbol{56.24 \pm 1.43}$	56.51 ± 1.41	55.95 ± 1.42	$\boldsymbol{56.29 \pm 1.43}$	54.07 ± 1.44
55.67 ± 1.40	56.26 ± 1.36	55.83 ± 1.35	56.01 ± 1.38	$oxed{55.35\pm1.40}$
5-sho	ot 5-way test on	LC dataset		
66.12 ± 0.98	64.71 ± 1.12	66.36 ± 1.10	72.95 ± 0.93	75.11 ± 0.91
67.51 ± 0.96	64.99 ± 1.05	65.39 ± 1.05	70.30 ± 0.93	71.19 ± 0.93
70.10 ± 0.92	69.28 ± 0.96	69.18 ± 0.97	72.99 ± 0.92	72.91 ± 0.94
71.97 ± 0.96	71.11 ± 1.04	71.19 ± 1.03	73.96 ± 0.94	73.20 ± 0.96
75.58 ± 0.88	74.26 ± 0.94	73.20 ± 0.95	75.81 ± 0.90	74.34 ± 0.96
75.86 ± 0.86	74.64 ± 0.89	$\textbf{74.12} \pm \textbf{0.93}$	76.17 ± 0.88	$oxed{75.08\pm0.95}$
1-shot	t 3-way test on 1	PAIP dataset		
41.51 ± 1.27	44.37 ± 1.26	44.28 ± 1.25	42.43 ± 1.27	42.78 ± 1.27
49.42 ± 1.28	48.07 ± 1.35	48.44 ± 1.36	48.76 ± 1.33	46.48 ± 1.37
48.60 ± 1.19	48.76 ± 1.25	47.98 ± 1.26	48.94 ± 1.23	47.20 ± 1.26
46.09 ± 1.17	47.44 ± 1.18	48.09 ± 1.19	46.76 ± 1.18	43.68 ± 1.22
$\boxed{ 51.97 \pm 1.18}$	$\textbf{52.25} \pm \textbf{1.22}$	51.80 ± 1.22	51.36 ± 1.22	$oxed{egin{array}{c} oxed{50.24\pm1.23}}$
51.34 ± 1.16	51.18 ± 1.19	51.51 ± 1.19	51.50 ± 1.16	49.77 ± 1.22
5-shot	t 3-way test on 1	PAIP dataset		
57.59 ± 1.07		59.37 ± 1.07	61.84 ± 0.85	60.81 ± 0.86
61.56 ± 0.97	62.52 ± 1.01	62.81 ± 1.01	64.40 ± 0.86	62.44 ± 0.93
62.20 ± 0.93	61.78 ± 0.99	63.20 ± 0.97	63.38 ± 0.86	63.03 ± 0.88
63.77 ± 0.88	63.85 ± 0.94	63.85 ± 0.93	63.61 ± 0.85	60.91 ± 0.87
67.16 ± 0.84	67.29 ± 0.89	66.88 ± 0.90	67.61 ± 0.85	$oxed{66.34\pm0.84}$
67.14 ± 0.85	67.67 ± 0.84	67.54 ± 0.86	67.12 ± 0.81	66.05 ± 0.83
1-sho		NCT dataset	<u> </u>	<u> </u>
1		1	58.71 ± 1.57	59.06 ± 1.55
	61.89 ± 1.50	61.90 ± 1.51	62.27 ± 1.47	61.05 ± 1.44
	64.18 ± 1.44	64.15 ± 1.46	64.83 ± 1.43	62.69 ± 1.38
65.22 ± 1.49	65.93 ± 1.41	65.94 ± 1.40	65.26 ± 1.45	62.66 ± 1.46
				$oxed{68.85\pm1.40}$
				68.03 ± 1.40
	I	I .	82.20 ± 0.82	82.75 ± 0.83
				82.39 ± 0.83
				82.89 ± 0.79
				83.03 ± 0.79
	87.00 ± 0.64	87.38 ± 0.62	87.82 ± 0.63	86.15 ± 0.69
87.74 ± 0.64	\perp 01.00 \pm 0.04	$(0,1,0)(0,1)\cup (0,2)$	()	()(), +) 1, 1, 1, 2,
	$1-sho$ 44.82 ± 1.41 48.79 ± 1.37 50.47 ± 1.31 49.73 ± 1.41 56.24 ± 1.43 55.67 ± 1.40 $5-sho$ 66.12 ± 0.98 67.51 ± 0.96 70.10 ± 0.92 71.97 ± 0.96 75.58 ± 0.88 75.86 ± 0.86 $1-sho$ 41.51 ± 1.27 49.42 ± 1.28 48.60 ± 1.19 46.09 ± 1.17 51.97 ± 1.18 51.34 ± 1.16 $5-sho$ 57.59 ± 1.07 61.56 ± 0.97 62.20 ± 0.93 63.77 ± 0.88 67.16 ± 0.84 67.16 ± 0.84 67.14 ± 0.85 $1-sho$ 56.03 ± 1.62 62.60 ± 1.45 65.43 ± 1.43 65.22 ± 1.49 71.55 ± 1.36 72.05 ± 1.34 $5-sho$ 76.85 ± 0.80 83.63 ± 0.83 83.63 ± 0.83	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Latent augmentation (LA) was originally proposed in Yang et al. (2022) to improve the performance of the few-shot learning system in a simple unsupervised way.



Generalization error on NCT dataset. The FACILE-FSP (ResNet18) trains on TCGA dataset with m coarse-grained labels. We show the error curve with two growth rates of m.

FACILE Algorithm

FSP: fully supervised preparing; SupCon: Supervised Contrastive Learning

Algorithm: FACILE algorithm

I. input: loss function ℓ^{fg} , ℓ^{cg} , feature map \mathscr{E} , predictors \mathscr{G} , \mathscr{F} , datasets \mathscr{D}_m^{cg} , \mathscr{D}_m^{fg}

2. obtain feature map $\hat{e} \leftarrow \mathcal{A}(\ell^{cg}, \mathcal{D}_m^{cg}, \mathcal{E})$

3. create artificial dataset

$$\mathcal{D}_n^{\text{fg,aug}} = \left\{ \left(z_i, y_i \right) : z_i = \hat{e} \left(x_i \right), \left(x_i, y_i \right) \in \mathcal{D}_n^{\text{fg}} \right\}_{i=1}^n$$

4. obtain fine-grained label predictor $\hat{f} \circ \hat{e}$, where

 $\hat{f} \leftarrow \mathcal{A}\left(\ell^{\mathrm{fg}}, \mathcal{D}_{n}^{\mathrm{fg,aug}}, \mathcal{F}\right)$

5. **output:** $\hat{f} \circ \hat{e}$