Enhancing Instance-level Image Classification with Set-level Labels Renyu Zhang, Aly A. Khan, Yuxin Chen, Robert L. Grossman # Summary - FACILE: an supervised learning algorithm that leverage set-level labels to improve instance-level image classification. - A theoretical analysis of the proposed method, including recognition of conditions for fast excess risk. - Experimental studies on two distinct categories of datasets: natural image datasets and histopathology image datasets. # Motivation From coarse-grained set-level labels to instance-level labels Most frequent superclass set label household furniture reptiles input set CIFAR-I 00 TCGA-LUAD TCGA-COAD MUS NORM STR TUM Whole slide image (WSI) examples from TCGA and patches from NCT dataset are in the lower row. Hierarchy of course- and fine-grained labels for histopathology images. ### Notation - ► Coarse-grained dataset: $\mathcal{D}_{m}^{cg} = \{(s_i, w_i)\}_{i=1}^{m}$ ► s_i : set of instances $\{x_i\}_{i=1}^{a}$ - ► w_i: set-level coarse-grained label - $ightharpoonup \mathcal{E}^{\mathrm{fg}}$: loss on fine-grained labels. - Fine-grained dataset $\mathcal{D}_n^{fg} = \{(x_i, y_i)\}_{i=1}^n$ - y_i : set-level coarse-grained labels. - Instance feature maps $e \in \mathcal{E}$, set-input functions $g \in \mathcal{G}$, and fine-grained label predictors $f \in \mathcal{F}$. The corresponding set-input feature map of an instance feature map e is defined as ϕ^e . ### **Problem Statement** Our primary goal is to learn an instance-level predictor $\hat{f} \circ \hat{e}$ that achieves low **excess risk**: $\mathbb{E}_{P_{X,Y}} \left[\ell^{\mathrm{fg}}(\hat{f} \circ \hat{e}(X), Y) - \ell^{\mathrm{fg}} \left(f^* \circ e^*(X), Y \right) \right]$ Schema of the model. The dotted lines represent the flow of fine-grained data, and the solid lines denote the flow of coarse-grained labels # Theoretical Analysis We denote the underlying distribution of $\mathscr{D}_{m}^{\operatorname{cg}}$ as $P_{S,W}$ and the underlying distribution of $\mathscr{D}_{n}^{\operatorname{fg}}$ as $P_{X,Y}$. We assume the joint distribution of Z and Y is $P_{Z,Y}$. Definition I. (Coarse-grained learning; pretraining) Let $\operatorname{Rate}_m(\ell^{\operatorname{cg}}, P_{S,W}, \mathscr{E})$ be the excess risk rate of $\mathscr{A}_m(\ell^{\operatorname{cg}}, P_{S,W}, \mathscr{E})$. Definition 2. (Fine-grained learning; downstream task learning) Let $\operatorname{Rate}_n(\ell^{\operatorname{fg}}, P_{Z,Y}, \mathscr{F})$ be the excess risk rate of $\mathscr{A}_n(\ell^{\operatorname{fg}}, P_{Z,Y}, \mathscr{F})$. **Definition 3.** We say that f is L-Lipschitz relative to \mathscr{E} if for all $s \in \mathscr{S}, x \in s, y \in \mathscr{Y}$, and $e, e' \in \mathscr{E}$, $|\mathscr{C}^{\mathrm{fg}}(f \circ e(x), y) - \mathscr{C}^{\mathrm{fg}}(f \circ e'(x), y)| \leq L\mathscr{C}^{\mathrm{cg}}(g_e \circ \phi^e(s), g_{e'} \circ \phi^{e'}(s))$ The function class \mathscr{F} is L-Lipschitz relative to \mathscr{E} , if every $f \in \mathscr{F}$ is L-Lipschitz relative to \mathscr{E} . Theorem 4. Assume that $\mathrm{Rate}_m\left(\mathcal{E}^{\mathrm{cg}},P_{S,W},\mathcal{E}\right)=\mathcal{O}\left(1/m^{\alpha}\right)$ and growth rate $m=\Omega\left(n^{\beta}\right)$, we obtain excess risk bound with probability at least $1-\delta$ by Conditions of fast excess risk rate (l.e., $\alpha\beta \geq 1$): (1) Larger α : better generalization performance on the pretraining task. (2) Larger β : larger growth rate of coarse-grained labels. ## Experiments: CIFAR-100 ### Pretrain with unique superclass number - Input-sets: we generate input sets by sampling between 6 and 10 images from CIFAR-100 training data - ▶ Targets: the unique superclass number of the input sets - Downstream task: few-shot testing on 100 classes of test set - Fine-grained learning: nearest centroid (NC); logistic regression (LR); ridge classifier (RC) | pretrain method | NC | LR | RC | |----------------------------------|------------------|------------------|------------------| | $\overline{\hspace{1cm}}$ SimCLR | 76.07 ± 0.97 | 75.88 ± 1.01 | 75.50 ± 1.02 | | Sim Siam | 78.15 ± 0.93 | 79.44 ± 0.92 | 79.03 ± 0.95 | | FSP-Patch | N/A | N/A | N/A | | FACILE-SupCon | N/A | N/A | N/A | | FACILE-FSP | 86.25 ± 0.79 | 85.42 ± 0.82 | 85.84 ± 0.81 | ### Pretrain with Most Frequent Superclass Targets: the most frequent superclass of the input sets | pretrain method | NC | LR | RC | |-----------------|------------------|---------------------|------------------| | SimCLR | 75.91 ± 1.00 | 75.82 ± 1.01 | 75.91 ± 1.02 | | Sim Siam | 78.80 ± 0.93 | 79.44 ± 0.95 | 79.43 ± 0.93 | | FSP-Patch | 73.21 ± 0.97 | 73.92 ± 0.98 | 73.40 ± 0.98 | | FACILE-SupCon | 79.54 ± 0.92 | 79.54 ± 0.96 | 79.12 ± 0.95 | | FACILE-FSP | 82.04 ± 0.84 | 81.70 ± 0.91 | 81.75 ± 0.90 | We can improve excess risk by increasing growth rate of coarsegrained labels and maintain log-linear relationship. Generalization error (with two growth rates) of FACILE-FSP on CIFAR-100 test dataset as a function of the number of coarse-grained labels m. # Evaluation on LC, PAIP, and NCT We first fine-tune fully-connected layer appended to ViT-B/14 from DINO V2 on TCGA patches with size ViT-B/14 from DINO V2 on TCGA patches with size 224×224 at 20× magnification. After the models are trained, we test the feature map in these models on LC, PAIP, and NCT. **Experiments: WSIs** | INC. | Γ | nC nC | LN+LA | $NC+LA$ | |-------------------------------|---|---|---|--| | 1-sho | ot 5-way test on | LC dataset | | | | 44.82 ± 1.41 | 47.51 ± 1.39 | 47.63 ± 1.38 | 47.36 ± 1.39 | 48.88 ± 1.44 | | 48.79 ± 1.37 | 49.43 ± 1.35 | 48.43 ± 1.36 | 49.38 ± 1.34 | 49.50 ± 1.34 | | 50.47 ± 1.31 | 50.52 ± 1.33 | 50.44 ± 1.32 | 51.66 ± 1.32 | 51.78 ± 1.38 | | 49.73 ± 1.41 | 53.59 ± 1.38 | 53.07 ± 1.41 | 51.79 ± 1.40 | 51.27 ± 1.43 | | $\boldsymbol{56.24 \pm 1.43}$ | 56.51 ± 1.41 | 55.95 ± 1.42 | $\boldsymbol{56.29 \pm 1.43}$ | 54.07 ± 1.44 | | 55.67 ± 1.40 | 56.26 ± 1.36 | 55.83 ± 1.35 | 56.01 ± 1.38 | $oxed{55.35\pm1.40}$ | | 5-sho | ot 5-way test on | LC dataset | | | | 66.12 ± 0.98 | 64.71 ± 1.12 | 66.36 ± 1.10 | 72.95 ± 0.93 | 75.11 ± 0.91 | | 67.51 ± 0.96 | 64.99 ± 1.05 | 65.39 ± 1.05 | 70.30 ± 0.93 | 71.19 ± 0.93 | | 70.10 ± 0.92 | 69.28 ± 0.96 | 69.18 ± 0.97 | 72.99 ± 0.92 | 72.91 ± 0.94 | | 71.97 ± 0.96 | 71.11 ± 1.04 | 71.19 ± 1.03 | 73.96 ± 0.94 | 73.20 ± 0.96 | | 75.58 ± 0.88 | 74.26 ± 0.94 | 73.20 ± 0.95 | 75.81 ± 0.90 | 74.34 ± 0.96 | | 75.86 ± 0.86 | 74.64 ± 0.89 | $\textbf{74.12} \pm \textbf{0.93}$ | 76.17 ± 0.88 | $oxed{75.08\pm0.95}$ | | 1-shot | t 3-way test on 1 | PAIP dataset | | | | 41.51 ± 1.27 | 44.37 ± 1.26 | 44.28 ± 1.25 | 42.43 ± 1.27 | 42.78 ± 1.27 | | 49.42 ± 1.28 | 48.07 ± 1.35 | 48.44 ± 1.36 | 48.76 ± 1.33 | 46.48 ± 1.37 | | 48.60 ± 1.19 | 48.76 ± 1.25 | 47.98 ± 1.26 | 48.94 ± 1.23 | 47.20 ± 1.26 | | 46.09 ± 1.17 | 47.44 ± 1.18 | 48.09 ± 1.19 | 46.76 ± 1.18 | 43.68 ± 1.22 | | $\boxed{ 51.97 \pm 1.18}$ | $\textbf{52.25} \pm \textbf{1.22}$ | 51.80 ± 1.22 | 51.36 ± 1.22 | $oxed{egin{array}{c} oxed{50.24\pm1.23}}$ | | 51.34 ± 1.16 | 51.18 ± 1.19 | 51.51 ± 1.19 | 51.50 ± 1.16 | 49.77 ± 1.22 | | 5-shot | t 3-way test on 1 | PAIP dataset | | | | 57.59 ± 1.07 | | 59.37 ± 1.07 | 61.84 ± 0.85 | 60.81 ± 0.86 | | 61.56 ± 0.97 | 62.52 ± 1.01 | 62.81 ± 1.01 | 64.40 ± 0.86 | 62.44 ± 0.93 | | 62.20 ± 0.93 | 61.78 ± 0.99 | 63.20 ± 0.97 | 63.38 ± 0.86 | 63.03 ± 0.88 | | 63.77 ± 0.88 | 63.85 ± 0.94 | 63.85 ± 0.93 | 63.61 ± 0.85 | 60.91 ± 0.87 | | 67.16 ± 0.84 | 67.29 ± 0.89 | 66.88 ± 0.90 | 67.61 ± 0.85 | $oxed{66.34\pm0.84}$ | | 67.14 ± 0.85 | 67.67 ± 0.84 | 67.54 ± 0.86 | 67.12 ± 0.81 | 66.05 ± 0.83 | | 1-sho | | NCT dataset | <u> </u> | <u> </u> | | 1 | | 1 | 58.71 ± 1.57 | 59.06 ± 1.55 | | | 61.89 ± 1.50 | 61.90 ± 1.51 | 62.27 ± 1.47 | 61.05 ± 1.44 | | | 64.18 ± 1.44 | 64.15 ± 1.46 | 64.83 ± 1.43 | 62.69 ± 1.38 | | 65.22 ± 1.49 | 65.93 ± 1.41 | 65.94 ± 1.40 | 65.26 ± 1.45 | 62.66 ± 1.46 | | | | | | $oxed{68.85\pm1.40}$ | | | | | | 68.03 ± 1.40 | | | | | | | | | I | I . | 82.20 ± 0.82 | 82.75 ± 0.83 | | | | | | 82.39 ± 0.83 | | | | | | 82.89 ± 0.79 | | | | | | 83.03 ± 0.79 | | | 87.00 ± 0.64 | 87.38 ± 0.62 | 87.82 ± 0.63 | 86.15 ± 0.69 | | 87.74 ± 0.64 | \perp 01.00 \pm 0.04 | $(0,1,0)(0,1)\cup (0,2)$ | () | ()(), +) 1, 1, 1, 2, | | | $1-sho$ 44.82 ± 1.41 48.79 ± 1.37 50.47 ± 1.31 49.73 ± 1.41 56.24 ± 1.43 55.67 ± 1.40 $5-sho$ 66.12 ± 0.98 67.51 ± 0.96 70.10 ± 0.92 71.97 ± 0.96 75.58 ± 0.88 75.86 ± 0.86 $1-sho$ 41.51 ± 1.27 49.42 ± 1.28 48.60 ± 1.19 46.09 ± 1.17 51.97 ± 1.18 51.34 ± 1.16 $5-sho$ 57.59 ± 1.07 61.56 ± 0.97 62.20 ± 0.93 63.77 ± 0.88 67.16 ± 0.84 67.16 ± 0.84 67.14 ± 0.85 $1-sho$ 56.03 ± 1.62 62.60 ± 1.45 65.43 ± 1.43 65.22 ± 1.49 71.55 ± 1.36 72.05 ± 1.34 $5-sho$ 76.85 ± 0.80 83.63 ± 0.83 83.63 ± 0.83 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Latent augmentation (LA) was originally proposed in Yang et al. (2022) to improve the performance of the few-shot learning system in a simple unsupervised way. Generalization error on NCT dataset. The FACILE-FSP (ResNet18) trains on TCGA dataset with m coarse-grained labels. We show the error curve with two growth rates of m. ## FACILE Algorithm FSP: fully supervised preparing; SupCon: Supervised Contrastive Learning ### Algorithm: FACILE algorithm **I. input:** loss function ℓ^{fg} , ℓ^{cg} , feature map \mathscr{E} , predictors \mathscr{G} , \mathscr{F} , datasets \mathscr{D}_m^{cg} , \mathscr{D}_m^{fg} 2. obtain feature map $\hat{e} \leftarrow \mathcal{A}(\ell^{cg}, \mathcal{D}_m^{cg}, \mathcal{E})$ 3. create artificial dataset $$\mathcal{D}_n^{\text{fg,aug}} = \left\{ \left(z_i, y_i \right) : z_i = \hat{e} \left(x_i \right), \left(x_i, y_i \right) \in \mathcal{D}_n^{\text{fg}} \right\}_{i=1}^n$$ **4.** obtain fine-grained label predictor $\hat{f} \circ \hat{e}$, where $\hat{f} \leftarrow \mathcal{A}\left(\ell^{\mathrm{fg}}, \mathcal{D}_{n}^{\mathrm{fg,aug}}, \mathcal{F}\right)$ 5. **output:** $\hat{f} \circ \hat{e}$