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Abstract

With the development of Internet and Web 2.0, large volume of multimedia contents have

been made online. It is highly desired to provide easy accessibility to such contents, i.e. ef-

ficient and precise retrieval of images that satisfies users’ needs. Towards this goal, content-

based image retrieval (CBIR) has been intensively studied in the research community, while

text-based search is better adopted in the industry. Both approaches have inherent dis-

advantages and limitations. Therefore, unlike the great success of text search, Web image

search engines are still premature.

In this thesis, we present iLike, a vertical image search engine which integrates both

textual and visual features to improve retrieval performance. We bridge the semantic gap

by capturing the meaning of each text term in the visual feature space, and re-weight

visual features according to their significance to the query terms. We also bridge the user

intention gap since we are able to infer the “visual meanings” behind the textual queries.

Last but not least, we provide a visual thesaurus, which is generated from the statistical

similarity between the visual space representation of textual terms. Experimental results

show that our approach improves both precision and recall, compared with content-based

or text-based image retrieval techniques. More importantly, search results from iLike are

more consistent with users’ perception of the query terms.
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Due to the explosive growth of multimedia information on the Internet, there arise enormous

demands for effective semantic retrieval over large scale visual databases. Typical visual

retrieval methods rely heavily on keywords-based query over meta-data, i.e., retrieving and

ranking images based on surrounding text or user-generated annotations. However, text-

only search methods may fall short for a variety of reasons, such as when visual databases

have little or no textual metadata, or if tags are inaccurate or ambiguous. In addition,

there are times and situations when we imagine what we desire, but are unable to express

this desire in precise wording. Take, for instance, a desire to find the perfect wedding dress

from a bridal shop. Any attempt to depict what makes a dress “perfect” for you may end

up undervaluing the beauty of imagination. To some extent, it may be easier to find such

a dress by looking through the shop’s dress collection and making unconscious “matches”

with the one conjured by imagination, than to use textual descriptions that fail to capture

the very essence of perfection. Therefore, when it comes to mining multimedia data, visual

interpretation of image/video content for indexing is of great importance in the research

filed.

Content-based image retrieval (CBIR), as we see it today, is any technology that in prin-

ciple helps to organize digital picture archives by their visual content [Datta et al., 2006a].

The current state-of-the-art in CBIR holds some promise and maturity to be useful for

real-world applications. For example, Google and Yahoo! are household names nowadays
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primarily due to the benefits reaped through their use; online photo-sharing has become

extremely popular with Flickr, which hosts hundreds of millions of pictures with diverse

content. While we witness continued effort in solving the fundamental open problem of

robust image understanding in the last decades, the research community has paved the

way of this emerging area, and triggered stronger association of weakly related fields, such

as database systems, computer vision, machine learning, information theory and and psy-

chology [Wang et al., 2006a]. What we see today in image retrieval literatures as a few

cross-field publications may very well spring into new fields of study in the foreseeable

future.

Despite the fact that image retrieval has been enjoying a sustainable development in

the previous years, there are still intrinsic difficulties in solving the core problems. As a

real-world technology, one problem with all current CBIR approaches is the reliance on

visual similarity for judging semantic similarity, which may be problematic for developing

efficient search algorithms. On the other hand, What the average end-user can hope to

gain from such applications, under what circumstances a typical user feels the need from

a CBIR system, and how a particular user expects the system to aid in this process are

some key questions to be answered in a successful system design. To be brief, the need of

the hour is to establish how Web image retrieval techniques can reach out to the common

population, in the way that both visual contents and user intentions are well interpreted.

In our current research, we restrict the discussion to a specific subject - vertical image

search. Our efforts in addressing such problems will be elaborated throughout this thesis.
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1.1 Problem description

Amidst the recent progresses of the CBIR-associated fields, it is important to recognize the

shortcomings of context-based indexing and searching of multimedia information over the

Internet. Unlike the great success of text-based web search, the research community is still

struggling on such area. In particular, major breakthroughs are expected to overcome some

key challenges: first and foremost, visual feature similarities are not necessarily correlated

with content similarities. There exists a semantic gap, which is the gap between low-

level visual features and high-level semantic concepts, i.e. the gap between vision and

perception. Second, there also exists a sensory gap between the object in the world and

the information in a (computational) description derived from a recording of that scene,

which makes recognition from image content challenging due to limitations in recording.

Third, it is difficult to handle the excessive computation caused by high dimensional data,

i.e., visual features extracted from images. Further more, most of the existing purely CBIR

prototypes still use offline image databases that are not comparable with the scale of the

Web, and the algorithm complexity turns to be unendurable once scaled up. Meanwhile,

advance in indexing high dimensional data is far less promising than indexing techniques

in the text domain. Last but not least, it is also difficult for users to provide or sketch a

good query in the query-by-example scenario.

Very large-scale multimedia repositories (e.g. the Library of Congress Prints and Pho-

tographs Catalog) are only indexed and retrieved by manually annotated metadata - tex-

tural features. Recently, some simple CBIR methods have been incorporated into com-
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mercial web image search engines. However, they still mostly rely on text-based methods,

i.e. indexing, retrieving and ranking images based on surrounding texts or user-generated

annotations. With the advances of text-based indexing, such systems demonstrate supe-

rior efficiency so that they are capable to handle very large amount of image data collected

from the Web. However, the search performance of TBIR approaches is not always reliable,

according to the following reasons:

• It is not always easy to accurately identify “surrounding texts”. Textual description

of Web images could be embedded at random positions in a webpage, and may get

even more complicated owing to various formatting schemes from different network

server provider.

• Surrounding texts do not necessarily describe the image content. Normally the In-

ternet is flooded with massive abundant information, which makes it very difficult to

extract “useful ” features without any specific knowledge about the object, such as

textual content and Website structure.

• Perceptions and descriptions of visual contents are very subjective and inconsistent.

Search engine users and content creators (narrators) may use different terms. Besides,

user-generated tags are usually short, hence there is more likely to be discrepancies

between annotators’ and users’ vocabularies.
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1.2 Proposed solution

To remedy the problems of text-only or visual-content-only image retrieval systems, some

recent approaches have proposed alternative routes to utilize both textual and visual

features in Web image search, e.g. [Luo et al., 2003, Cui et al., 2008b, Cui et al., 2008a,

Jing et al., 2006, Wang et al., 2007]. They are mostly two-phase hybrid approaches, which

first use text retrieval to obtain a candidate result set, and employ CBIR methods to further

process (e.g cluster or rank) the candidates. In this way, image and text contents are not

semantically associated - image (visual) features and textual features are used separately.

In this thesis, we present a vertical search engine, namely iLike, that truly integrates

both text and visual features to improve image retrieval performance. As mentioned in

[Smeulders et al., 2000a], narrow image domains usually have limited variability and better-

defined visual characteristics, which makes content-based image search a tad bit easier to

formulate (correspondingly, the high variability and unpredictability of the broad domains

in generalized image search makes it more challenging). In the scenario of vertical search,

we have a better chance to integrate visual features from images and textual features

from surrounding text contents. First, text contexts are better organized, hence focused

crawlers/parsers are able to generate data patterns and structured data. Second, we are

able to associate text content with images with higher confidence, e.g. product images and

product descriptions, paintings, and introductions, etc. Thrid, with the knowledge of the

focused domain, we are able to select image features and similarity measures that are more

effective for the domain. Finally, computation issue becomes less critical for a smaller data
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set.

In addition to the merits of convenient system design, vertical search makes it easier for

image retrieval evaluation as well, and appropriate modifications must be made to base-

line evaluation metrics for consistency [Huijsmans and Sebe, 2005]. iLike retrieves relevant

images by their association with search queries, where there is no clear intent of a picture,

but instead the search proceeds by iteratively refined browsing. For example, a search

query with keyword “floral” may initiate a group of product images with floral prints, and

the search results will then be refined according to the user intentions interpreted by the

proposed algorithm (i.e., what user want by providing keyword “floral”). The baseline

approach follows the same procedure as iLike does, except for skipping the core algorithm

of user intention interpretation.

Compared with existing research, we take a different approach that focuses on learning

the association between textual and visual features from a very-large scale data set. With

the extreme popularity of social media, we are able to collect a large image database

with reasonable-quality labels. We first extract both textual features and low-level image

features from the collected data set to identify associations between visual features and

textual features at the level of image vs. text. However, due to the existence of the semantic

gap, such associations make little sense at object/region vs. term level. We propose a

statistical learning model to discover the inherent connections between the concepts behind

textual terms with regions and low-level visual features from images, i.e. to map textual

entities into visual feature space. Particularly, we will build a computational model to
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extract concepts from textual terms, and link them with regions and features extracted

from images. The model will be trained and tested on a large scale image dataset crawled

from social media sites.

We have implemented iLike as a vertical product search engine for apparels and acces-

sories, but the technique could be easily adopted in many domains where textual and visual

contents co-exist. In iLike, we discover the relationships between textual features extracted

from product descriptions and image features extracted from product pictures. Notable

among the concepts introduced in this thesis are subspace transformation and “visual the-

saurus”. The overall goal therefore remains to bridge the semantic gap using the available

visual features, associated textual descriptions and relevant domain knowledge to support

varied search categories, ultimately to satiate the user.

1.3 Contributions

Our technical contributions are three-fold: (1) we bridge the semantic gap by integrating

textual and visual features and hence significantly improve the precision of content-based

image retrieval. We also improve the overall recall by yielding items that would otherwise

be missed by searching with either type of the features. (2) We bridge the user intention gap

between users’ cognitive intentions (information needs) and their textual forms (queries)

received by the IR systems. Our system is able to perceive users’ “visual intentions” behind

search terms, and apply such intention to leverage on relevance assessment and ranking.

(3) By assessing representations of keywords in the visual feature space, we are able to
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discover the semantic relationships of the terms and automatically generate a thesaurus

based on the “visual semantics” of words.

Success of the proposed project will bring major impacts to research communities such

as information retrieval, computer vision, and multimedia. We not only discover and ex-

plore a new viable path to the open problem of content-based multimedia information

retrieval, but also introduce novel ideas and methods to all the related areas, and further

stimulate research discoveries and industrial applications. The methods will be used for

web image search, mobile search, information retrieval from very large offline multimedia

repositories, automatic image tagging, synthetic image generation from text, image un-

derstanding, and robotics, etc. With the massive volume of multimedia contents that are

produced and accessed in our daily life, the expected social impacts and industrial interests

will be significant.

1.4 Thesis organization

The thesis is organized into the following chapters:

• Chapter 1: Introduction - An introduction to the area, the challenge and problem

description, the proposed solution and evaluation criteria, and the contributions of

this research.

• Chapter 2: Background - An overview of related image retrieval techniques like

CBIR along with automated and folksonomic tagging approaches.
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• Chapter 3: System Overview - A description of the system architecture, along

with details of data acquistion and feature extraction methods.

• Chapter 4: The Method - A detailed elaboration on our method of image retrieval,

which integrates both textual and visual features to build a weight vector for retrieving

relevant images for a given query.

• Chapter 5: Experimental Results - A description of the evaluation strategy and

results.

• Chapter 6: Conclusion and Discussions - A conclusion with discussions on the

merits of our approach in comparison to other approaches.
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Early information retrieval systems like the Catalog records for Prints and Photographs in

the Library of Congress involved manual annotation of images with textual meta-data which

were used by the text based retrieval methods for providing access to those images. Manual

annotation of data would however, be an extremely time consuming and expensive task

when applying for large scale image databases. Also it is not possible to describe images

accurately and completely just using a set of keywords. Most often discrepancies between

the query words and keywords used to tag the images lead to poor image retrieval results.

Content Based Image Retrieval (CBIR) systems were developed with a view to overcome

the drawbacks of the meta-data based searches. CBIR techniques involve using visual

features such as color, texture and shape information of the image to index and retrieve

the image. Comprehensive surveys on CBIR can be found at [Smeulders et al., 2000b,

Lew et al., 2006, Datta et al., 2006b].

In the context of CBIR, search has been described as a specification of minimal invariant

conditions that model the user intentions, geared at bridging the semantic gap between high

level image content and the low level visual features, while reducing the sensory gap due

to accidental distortions, clutter, occlusion, etc. In this chapter, we provide an overview of

the key theoretical and empirical contributions in the past years related to image retrieval

and automatic image annotation. We also discuss significant challenges involved in the

adaption of existing image indexing techniques for image retrieval research.

10



2.1 Image processing in CBIR

Feature selection is a primary step of any CBIR technique and involves selecting low level

image features that can be used to suitably capture the image content. Most CBIR sys-

tems perform feature extraction as a preprocessing step: once obtained, visual features

act as inputs to subsequent image analysis tasks, such as similarity estimation, concept

detection, or annotation. So, the purpose of image processing in image retrieval must be

to enhance aspects in the image data relevant to the query and to reduce the remaining

aspects [Ma and Zhang, 1998]. We survey the key contributions over image feature ex-

traction methods over color, the local texture, or local geometry/shape that are related to

our proposed iLike prototype in this section. Considerations for indexing effectiveness are

reflected during the discussion.

2.1.1 Color image processing

Color has been an active area of research in image retrieval, as for its superior discriminating

potentiality of a three-dimensional domain compared to the single dimensional domain

of gray-level images. Since the human perception of color is an intricate topic, and the

recorded color varies considerably with the environment (i.e., the viewpoint of the camera,

the orientation of the surface, the intensity and position of the illumination, etc ), capturing

perceptual similarity turns out to be a challenging task.

RGB representations are in wide-spread use for image representation. However, as RGB

representations describe the image in its literal color properties, and thus it makes most
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sense when recording in the absence of variance, as is the case, where two-dimensional

images are recorded in frontal view under standard conditions. To overcome the sensory

discrepancy, the HSV space representation of an image is often selected for its invariant

properties. The hue is invariant under the orientation of the object with respect to the

illumination and camera direction and hence more suited for object retrieval.

One common approach to cope with the inequalities in observation due to surface re-

flection is to search for clusters in a color histogram of the image. The earliest use of

color histograms for image indexing was that in [Swain and Ballard, 1991], demonstrat-

ing that histograms of multicolored objects provide a robust, efficient cue for indexing

into a large database of models. Two indexing techniques, namely Histogram Intersection

and Histogram Backprojection, were proposed for solving the image matching problem

and object location problem in crowded scenes. Such method was further developed in

[Stricker and Orengo, 1995] with improved indexing techniques to color information in dig-

ital images. In [Huang et al., 1998], color correlograms were proposed as enhancements to

histograms, that took into consideration spatial distribution of colors as well.

Rather than histogram approaches for color processing, innovations in color constancy

were made by taking specular reflection and shape into consideration [Finlayson, 1996].

Color constancy is the capability of humans to perceive the same apparent color in the

presence of variations in illumination which change the physical spectrum of the perceived

light. In this work, an illumination invariant color representation was employed to extract

color features. Color constant indexing leads to some loss in discriminating power among

12



objects, but yields illumination independent retrieval instead.

2.1.2 Image texture processing

Many common textures (the structure and randomness of an image) are composed of small

textons usually too great in number to be perceived as isolated objects. The elements can

be placed more or less regularly or randomly. They can be almost identical or subject to

large variations in their appearance and pose. In the context of image retrieval, research is

mostly directed toward statistical or generative methods for the characterization of patches.

Statistical features of grey levels were one of the earliest methods used to classify textures.

[Haralick et al., 1973] suggested the use of grey level co-occurrence matrices (GLCM) to

extract second order statistics from an image. Haralick defined the GLCM as a matrix of

frequencies at which two pixels, separated by a certain vector, occur in the image. The

distribution in the matrix will depend on the angular and distance relationship between

pixels. Varying the vector used allows the capturing of different texture characteristics.

Once the GLCM has been created, various features can be computed from it. The texture

features, then, have been classified into four groups: visual texture characteristics, statistics,

information theory and information measures of correlation.

Tamura et al. took the approach of devising texture features that correspond to hu-

man visual perception [Tamura et al., 1978]. They defined six textural features (coarseness,

contrast, directionality, line-likeness, regularity and roughness) and compared them with

psychological measurements for human subjects. The first three attained very successful

13



results and are used in our evaluation, both separately and as joint values. Coarseness has

a direct relationship to scale and repetition rates and was seen by Tamura et al. as the

most fundamental texture feature. Contrast aims to capture the dynamic range of grey

levels in an image, together with the polarisation of the distribution of black and white.

Directionality is a global property over a region. In [Tamura et al., 1978], the direction-

ality strength of an image was calculated with a statistical measure from its directional

histogram.

Besides the statistical analysis of image texture from its spacial distributions, wavelets

have received wide attention. Many wavelet transforms are generated by groups of dilations

or dilations and rotations that have been said to have some semantic correspondent. They

have often been considered for their locality and their compression efficiency. One of the

most popular signal processing based approaches for texture feature extraction has been the

use of Gabor filters. These enable filtering in the frequency and spatial domain. It has been

proposed that Gabor filters can be used to model the responses of the human visual system.

[Turner, 1986] first implemented this by using a bank of Gabor filters to analyse texture. A

bank of filters at different scales and orientations allows multichannel filtering of an image

to extract frequency and orientation information. This can then be used to decompose

the image into texture features. Classifying images based on the above features has been

shown to be sucessful in literatures [Manjunath et al., 2001, Raimondo et al., 2009].
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2.1.3 Shape and geometrical features

Image shape features refer to all properties that capture conspicuous geometric details in

the image. Although searching for images using shape features has attracted much attention

in past years, shape representation and description remains to be a difficult task. This is

because when a three dimensional real world object is projected onto a two dimensional

image plane, one dimension of object information is lost. It comes to the result that the

shape extracted from the image only partially represents the projected object. In addition,

shape is often corrupted with noise, defects, arbitrary distortion and occlusion, making the

problem even more complex.

For retrieval, we need shape descriptors that allow a robust measurement of distances

in the presence of considerable deformations. Shape descriptors can be divided into two

main categories: region-based and contour-based methods. Region-based methods use the

whole area of an object for shape description (i.e., [Khotanzad and Hong, 1988] utilized

a set of Zernike moments calculated within a disk centered at the center of the image

as shape descriptor), while contour-based methods use only the information present in the

contour of an object, such as circularity, aspect ratio, discontinuity angle irregularity, length

irregularity, complexity, right-angleness, sharpness, directedness, etc.

Local shape characteristics stem from directional color derivatives (or texture proper-

ties). In highly textured patches of diverse materials, such features were used to derive

perceptually conspicuous details [Mojsilovic et al., 2000]. Scale space theory, which pro-

vides the theoretical basis for the detection of conspicuous details on any scale, was devised
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as the complete and unique primary step in preattentive vision, capturing all conspicu-

ous information. Contours of images represented in terms of geometric invariant moments

[Dudani et al., 1977] have also been used to capture shape information. Besides conspicu-

ous shape geometric invariants [Rivlin and Weiss, 1995], a method employing local shape

and intensity information for viewpoint and occlusion invariant object retrieval was given

in [Schmid and Mohr, 1997]. The method relies on voting among a complete family of

differential geometric invariants, allowing efficient image retrieval from large database of

images.

Global shape (object shape) analysis is a dense image data field different from local

shape evaluation. To extract object-specific information contained in images, the theoreti-

cally best way is by segmenting the object in the image. However, in many cases, it is not

necessary to know exactly where an object is in the image as long as one can identify the

presence of the object by its unique characteristics. With a proper feature accumulating

algorithm (i.e., [Swain and Ballard, 1991]), the object internal features are largely identical

to the accumulative features computed over the object area. [Mehtre et al., 1997] provided

abundant comparison of shape for retrieval, evaluating many features on a 500-element

trademark data set. Straightforward features of general applicability include Fourier fea-

tures and moment invariants [Vijay and Bhattacharya, 2009], sets of consecutive boundary

segments, or encoding of contour shapes [Esperanca and Samet, 1997].
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2.1.4 Storage of image features

Practically, the most interesting applications of retrieval are on large data sets, where there

is statistically sufficient coverage of the image spectrum and learning general knowledge

from the data sets makes sense. When storing the feature vectors in a database, linear file

with one record of each feature vector, we have to scan through all feature vectors. In that

case, we are bound to perform N fetches of a record plus subsequent operations to find

the data vector most similar to the query feature vector. The response time of a image

indexing and retrieval system will be possibly out of reach for large volume data sets (say,

half a million or more).

In addition to the number of images, the dimension of the image vector can also be con-

siderable for the performance systems. One of the primary challenges of CBIR techniques

is the intensive computational cost due to the need for indexing high dimensional visual

features thereby preventing the wide spread adoption of CBIR for Web image search. In the

example of a wavelet histogram for texture-based retrieval [Smith and fu Chang, 1996], an

image had a nine-dimensional vector for each pixel compressed to a 512-bin histogram

to a total of 5122 histograms of 512 bins per image. The shape indexing technique

[Sharvit et al., 1998] represented an image vector by a hierarchically ordered set of six

types of nodes and three types of links, each encoding a number of image descriptors.

Moreover, indexing in high dimensional spaces is difficult by the curse of dimensionality,

a phenomenon by which indexing techniques become inefficient as the dimensionality of

the feature space grows [Hughes, 1968]. A lot of traditional multidimensional indexing
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techniques, such as k-d tree, quad-tree, R-tree and its variant R+-tree and R∗-tree, are

usually not scalable to dimensions higher than 20 [White and Jain, 1996].

2.2 Image annotation

Image annotation or image tagging is an area closely related to image retrieval. Image anno-

tation techniques were primarily developed to address the semantic gap of CBIR techniques

and to help improve image search quality. The task of image tagging involves assigning a

set of text labels that can be used to describe an image or what it contains. In the thesis,

effective image tagging is treated as a means of satisfactory image search. We divide them

according to their user-dependence into two types of approaches, i.e., automatic image tag-

ging and folksonomic tagging, and discuss in the following section some realistic scenarios

that arise in image annotation.

2.2.1 Automatic image tagging

Automated image tagging techniques were developed to address the semantic gap of the

CBIR systems and also to overcome the tedium of manual annotation. These systems

help in automatically adding tags or meta-data for the images with words that can be

used to bridge the semantic gap. The task of automated image tagging has primarily been

treated as a pattern classification problem and hence several supervised machine learning

techniques have been attempted for it. In general, the learning task is to build a classifier or
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model that identifies the mapping between the low-level image features and the high-level

concepts of keywords that have used to classify the images as a part of a training set. Once

the classifier or model is built, it calculates the similarity of all the trained classes and

assigns the unlabeled instance to a class with the highest similarity measure.

We have witnessed a wealth of promise in automatic image tagging as an emerging

technology. In [Vailaya et al., 2001], a hierarchical three-stage classification using Bayes

classifiers was proposed. The images were first classified as outdoor or indoor, then the

outdoor images were further classified as city or landscape and finally the landscape images

were classified into sunset, forest, and mountain classes. [Jeon et al., 2003] proposed an au-

tomatic image annotation model based on cross-media relevance models. They assumed

that regions in the image can be represented by using a small vocabulary of blobs. Blobs

were generated from image features using clustering. Given a training set with annota-

tions, using probabilistic models they were able to predict the probability of generating a

word given the blobs in an image. On the other hand, [Barnard et al., 2003] treated im-

age annotation as a machine translation problem. Other means of text-image interaction,

which make use of visual information to help annotate images have also been proposed

[Li et al., 2006, Zhou and Dai, 2007]. [Wang et al., 2006b, Kennedy et al., 2006] made use

of image search results as a means to improve the annotation quality. [Li and Wang, 2008]

developed ALIPR - “Automatic Linguistic Indexing of Pictures - Real time”, which auto-

matically generated tags in real time based on only the pixel information in the image. It

was based on a generative modeling technique, where a model for producing image seg-
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ments and words was built from the training set. For a testing image, text terms were

ranked by the posterior probabilities, and top results were selected as the tags for the im-

age. This method was built upon the ALIP, which used a 2-D Multi-resolution Hidden

Markov Model (MHMM) [Li and Wang, 2005]. Earlier systems were not fast enough to

consider performing image annotation in real time. By exploiting statistical relationships

between words and images and without having to identify individual objects in the images,

[Li and Wang, 2008] demonstrated that it was possible to provide more than 98% of the

words with at least one correct annotation out of the top 15 selected words, making it

possible to annotate images in real time.

2.2.2 Folksonomic tagging

Automatic image tagging approaches were shown to be most effective when the keywords

have frequent occurrence and strong visual similarity. However, it is still a challenge

for these techniques to annotate images with more specific or visually less similar key-

words. It has been shown that manual annotation of images with user generated labels

can be used to improve the quality of the image search results [Lieberman et al., 2001,

von Ahn and Dabbish, 2004]. Manual annotation of images can be categorized into tagging

and browsing. Tagging allows users to annotate an image with a chosen set of keyword set

or vocabulary. Google Image Labeler (http://images.google.com/imagelabler/) and Flickr

image tags (http://www.flickr.com/photos/tags/) are some examples of such efforts. On

the other hand, browsing requires users to sequentially browse a set of images and judge
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their relevance to a predefined keyword. [Yan et al., 2007] introduced a hybrid approach

called frequency based tagging that combines both tagging and browsing into a unified

framework.

The practice of creating and managing tags is referred to as folksonomic tagging in the

context of Web 2.0, which aims at facilitating sharing of user generated content. Folkso-

nomic tagging of images by users who are not trained in image annotation usually tends

to be subjective and often leads to ambiguous annotations, especially when there is no

fixed vocabulary for the annotation. In order to overcome the tedium of manual tagging

and to improve the quality of the image tags, automated tag recommendation systems

like [Wu et al., 2009] have been developed. With a growing number of social network sites

which allow sharing and tagging of photos, methods like [Sawant et al., 2010] have been

used to develop fully automated and folksonomically scalable tag recommendation systems.

Such systems leverage the collective vocabulary of a group of users, which is less susceptible

to noise from an individual’s subjective annotation, resulting in high quality image tags.

2.3 Image search on the web

2.3.1 Text-based image retrieval

Current web based image search engines like Google Image Search(http://images.google.com),

Yahoo image search(http://images.search.yahoo.com) and Bing(http://www.bing.com) pri-

marily rely on textual meta data for image retrieval. They take the keywords specified
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as apart of the search query and match them with the meta-data associated with the

image which may include the image file name, the image URL, any alternate text pro-

vided for the image and any other surrounding text present in the web page contain-

ing the image. Then again, since the textual information surrounding an image may

not necessarily correctly describe the image, the retrieval performance of the meta-data

based searches can still be poor. There are also more aggressive text based methods

[Aslandogan et al., 1997, Shen et al., 2000] which were employed on the text surrounding

the images to better associate semantic information with the images. Link analysis tech-

niques [Lempel and Soffer, 2001, Cai et al., 2004] have also been employed to improve the

search performance.

2.3.2 Image retrieval with visual features

As we have discussed at the beginning of chapter 2, content based image retrieval techniques

incorporates various visual features for image indexing and search. When the information

from images is captured in a feature set, there are two possibilities for endowing them

with meaning: One derives an unilateral interpretation from the feature set, while the

other one compares the feature set with the elements in a given data set on the basis of a

similarity function. With sufficient data and computational power, it is possible to learn

the semantics of objects from their appearance. Along this route, latent semantic indexing

[Deerwester et al., 1990] was proposed to practical use in image retrieval. First, a corpus

was formed of documents (in this case, images with a caption) from which features were
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computed. Then, by singular value decomposition, the dictionary covering the captions was

correlated with the features derived from the images. Such approach, together with the

majority of semantic retrieval techniques, essentially boil down to a classification problem.

For a review on statistical pattern recognition, see [Jain et al., 2000].

Some recent works relies on a Bag of Visual Words approach to categorize, index and re-

trieve images [Lazebnik et al., 2006, Tirilly et al., 2008, Yang et al., 2007, Jiang et al., 2007].

Based on local descriptors for the images, this approach is similar to the bag of words rep-

resentation for text documents in terms of forms and semantics. It describes and detects

interesting regions in the images, builds the visual vocabulary and indexes the images based

on this vocabulary. Existing weighting schemes for indexing which are mostly migrated from

the text retrieval domain do not take into account the difference between textual and visual

words. [Bouachir et al., 2009] proposed an improvement to indexing for the Bag of Visual

Words approach. In the approach, they make use of Scale Invariant Features Transform

(SIFT) to extract the local features and make use of a new weighting scheme based on a

Fuzzy model to index the images. Sequently, [Kogler and Lux, 2010] applied a fuzzy clus-

tering technique for visual words creation and visual words assignment and showed that

fuzzy clustering led to more robust results in terms of retrieval performance.

2.3.3 Hybrid methods for image search

Several prototypes for content-based image search on the web are available in litera-

tures [Frankel et al., 1996, Sclaroff et al., 1997, Mukherjea et al., 1999, Chen et al., 2001,
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Kompatsiaris et al., 2001]. However, our approach to image retrieval is significantly differ-

ent from these existing approaches in the way that we integrate both textual and visual fea-

tures to improve retrieval performance. In a web search context there are often both images

and surrounding text available as a part of the web page which when used together can help

to bridge the semantic gap and also provide for better indexing by integrating both textual

and visual features. Luo et al. [Luo et al., 2003] introduced a two-stage hybrid approach

where a text-based search is first used to generate an intermediate result set with high re-

call and low precision which is then refined at the second step by applying CBIR to cluster

or re-rank the results. Although this approach suffers from over simplified image features

and clustering methods, the idea of applying CBIR after text search seems to be a viable

alternative. More recently, Bing image search (http://www.bing.com/images/) has started

to employ CBIR techniques to re-rank search results [Cui et al., 2008b, Cui et al., 2008a],

when users select the ”show similar images option”. More complicated re-ranking algo-

rithms [Jing et al., 2006, Wang et al., 2007] have been proposed to improve search perfor-

mance and user experience.

2.3.4 Domain-specific image search

Applying CBIR for the general web is hard problem. Some research efforts have proposed

to apply CBIR to vertical search, which cater only to specific sub-domains of the web.

These vertical search engines employ focused crawlers to crawl constrained subsets of the

general web, and evaluate user queries against such domain specific collections of docu-
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ments. Besides leveraging the benefits of a smaller data set, these engines can also employ

domain knowledge to help with relevance assessment and result ranking. Some example

of vertical image search include: photo album search [Zhang et al., 2006], product search

(http://www.like.com/, http://www.riya.com/), airplane image search (http://www.airliners.net/),

etc. There are also off-line image retrieval systems that work on domain specific collections

of images, such as personal albums [Zhang et al., 2004, Cui et al., 2007], leaf image search

[Wang et al., 2002, Dua et al., 2007], fine arts images search [Yee et al., 2003], etc. These

approaches made use of domain specific knowledge in image preprocessing, feature selec-

tion and similarity measurements. For example, leaf image searches may have emphasis

on shape and texture features while personal album searches may employ face recognition

methods to improve search performance.

Thus far, we have introduced the background knowledge and most of the related works

of our research. In our approach to improve image retrieval performance, we integrate both

text and visual features and apply it to the search of images in the vertical domain of

clothing and apparels. Our efforts to build an image search system based on feature from

cross domains varies from the previous works. We’ll present and evaluate our iLike solution

for vertical image search in the following chapters, as an aggressive attempt to overcome

the core problem of image retrieval, which is to access the visual similarity at semantic

level.
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3.1 System architecture
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Figure 3.1: System overview of iLike.

Since our goal is to integrate textual and visual features in vertical search, it is of our

interest to select a domain where text content is directly associated with image content.

Online shopping, especially clothing shopping, is a good example of such domains. In

shopping websites, text descriptions are always available with item images, and are usually

faithful descriptions of the image contents. Moreover, we believe that both text descriptions

and product images are equally important since: (1) from users’ perspectives, they can only

issue keyword queries for product search; on the other hand, while browsing the results,

users focus more on visual presentations than the text specifications. (2) Due to different

personal tastes, the descriptions of fashionable items are very subjective, hence traditional

text-based search on such descriptions may not yield satisfactory results. Especially, the

recall can be very low when there is a discrepancy between user’s and narrator’s tastes or
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vocabularies. (3) In many cases, two items may have similar style in human perception, but

we see huge difference in the visual features. Hence, pure content-based image search will

not yield high recall either. Therefore, this is an ideal case in which we can demonstrate the

power of combining visual and textual features in vertical search. Note that our arguments

are based on fashion shopping, but they are also true in many other shopping categories.

Therefore, our system could be migrated to other categories with minimum modification.

The iLike system is comprised of three major components: the Crawler, the (Pre-

)Processor, and the Search and UI component. As shown in Figure 3.1: (1) the Crawler

fetches web pages from retailer websites, where structured text descriptions and item im-

ages are both available. (2) The text parser preprocesses pages using a customized parser,

and fits item information (e.g. title, description) into a pre-defined universal schema. Using

classic text retrieval methods, text processor generates term dictionary and text index. (3)

Simultaneously, the image processor segments product images and calculates low level vi-

sual features. (4) Next, we integrate textual and visual features by calculating a “centroid”

and a weight vector in the visual feature space for each text term. With those text term

weight vectors, we then construct a visual thesaurus for each text term, which in turn can

be used to improve the quality of the weight vectors. Such vectors are further utilized in

item ranking. (5) Finally, the User Interface provides query interface, as well as browsing

views of search results.

In iLike , a user starts with a traditional text query (since query-by-example is not really

practical in this scenario), and the system returns a ranked list of relevant items (namely
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the initial result set) using classic text retrieval algorithms. For each result in the initial

result set, we construct a new query by integrating textual and visual features from item

images. Each expanded query is evaluated to find more “similar” items. More importantly,

a weight vector which represents the “visual perception” behind the text query is enforced

during evaluation of the expanded queries. For instance, with a query “silky blouse”, the

weight factor will increase the significance of some texture features, and fade out irrelevant

features, hence correctly interpret the visual meaning behind search term “silky”. The

overall philosophy of our approach is to infer user intention from the query and enhance

the high level features that are implicitly favored, while diversify (if possible) on other

features.

3.2 Crawling and feature extraction

Data Acquisition. In the prototype, we have initially crawled a total of 42292 product

items from eight online retailers: Banana Republic, Old Navy, Gap, Athleta, Piperlime,

Macy’s, Bluefly and Nordstrom. They all provide mid-sized hi-quality images and well

structured textual description. We use focused crawlers to harvest both text and images.

Please note that the system is easily expandable by implementing more customized crawlers

and parsers.

For each product, we record the name, category, class, online product ID, local path of

the main image, original URL, detailed textual description, color tags, and size information,

if available. We use an unique id for each product item, to identify both the database record
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and the image file. Text information is stored in a MySQL database (Version 5.0)1, and all

the customized software (e.g. focused crawlers) are written in C# programming language.

Visual Features.

In order to make a sufficient coverage of an image’s semantic meaning, we attempt

to diversify the part of feature selection. In iLike, a set of 401 commonly used texture,

shape, intensity and color features are extracted to represent the low-level visual features

of images.

We use gray-level co-occurrence matrix (GLCM)[Haralick et al., 1973] to capture the

basic texture information: contrast, correlation, energy, and homogeneity of the grayscale

images are calculated, each of which generating a 4-scale feature vector. To summarize the

relative frequency distribution (which describes how often one gray tone will appear in a

specified spatial relationship to another gray tone on the image), a vector of 13 Haralick

texture features are extracted from the grey level co-occurrence matrices. Image coarse-

ness and direction are obtained by calculating 3 dimensions of Tamura texture features

[Tamura et al., 1978]. To capture texture patterns in frequency domain, we apply Ga-

bor wavelet filters in 8 directions and 5 scales, acquiring a vector of 40 texture features.

Besides, fourier descriptors[Vijay and Bhattacharya, 2009] are also employed, contributing

9-dimensional feature vector to our feature set. To extract the shape information, we repre-

sent the contour of an image in terms of 7 geometric invariant moments[Dudani et al., 1977],

which are invariant under rotation, scale, translation and reflection of images. We capture

1http://www.mysql.com/
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the spatial distribution of edge with 5 edge strengths generated from an edge histogram

descriptor[Manjunath et al., 2001] in the MPEG-7 standard. The distribution of edges is a

good texture signature that is useful for image to image matching even when the underlying

texture is not homogeneous. As part of shape features, the edge orientation is represented

by phase congruency features (PC) [Kovesi, 1999] and high-order moments of characteris-

tic function (CF) [Teague, 1980]: A three-level Daubechies wavelet decomposition of the

test image is performed before edge detection. At each level, the first four moments of

phases, which are generated by Sobel edge detector, are obtained, together with the first

three moments of the characteristic function, yielding a 106-dimensional feature vector. To

capture the color distribution [Stricker and Orengo, 1995], we first divide an image into

several blocks (we use 1 by 1, 2 by 2, 3 by 3 blocks in iLike), and then extract the first three

moments of all blocks in each of the YCbCr channel, i.e., for a color image we store 90

floating point numbers as color moments (CM) features. The color histogram features are

generated by color quantization approach. We map the original image into the HSV color

space, and implement color quantization using 72 colors(8 levels for H channel, 3 levels for

S channel and 3 levels for V channel).

The chosen features have been proved to work well for image classification in liter-

ature [Ma and Zhang, 1998, Stricker and Orengo, 1995, Manjunath et al., 2001], etc. On

the other hand, we do not want our search performance to be overwhelmed by very com-

plicate and computationally intensive visual features. Meanwhile, a comparative study

[Deselaers et al., 2004] has shown that the effectiveness of visual features is dependent on
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the particular task. However, such a specifically optimized system cannot be easily migrated

to other domains, due to the labor-intensive manual feature selection process. Instead, in

iLike features are automatically weighted based on their significance to the user intent (im-

plicitly carried by the query). Less important features are faded out, while more important

features are enhanced. Therefore, unlike other CBIR approaches, the “quality” of low-level

visual features is not the key factor in our system. As a side effect, our method is robust:

the ranking quality is less sensitive to the selection of low-level image features. We will

further discuss on feature quality and correlation in chapter 4.

Segmentation. Our database contains images of products in all shapes and sizes. Various

retailers have different specifications of their product demo, some of which have introduced

non-ignorable errors to feature extraction. For instance, the presence of a lingerie model

could significantly influence the feature distribution. To simplify and clean the represen-

tation of product images and minimize the error of features, we perform an “YCbCr Skin-

color Model”[Kakumanu et al., 2007]-based image segmentation on selected domains(i.e,

categories and shopping sites that usually have models in) to remove the skin area and

highlight product items.

As a specific segment of online images, the content of online product images usually

aligns in the center with a decent margin around, while the background color varies due

to various styles of different retailers. When comparing the similarities of products across

different shopping sites, it is important to focus only on the subjects and leave out the rest.

In our framework, we enhance the local features of certain region by performing a multiple
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size partitioning on the target image, and the weighting scheme of iLike will pick out the

block(s) of interest.

Normalization. Our system uses diverse types of image features. However, features from

different categories are not comparable with each other, since they take values from different

domains. Without any normalization, search results will be dominated by those features

taking larger values. To reduce the interferences brought by different feature types and

scopes, we map the range of each feature �x to (0, 1):

yi =
xi −min(�x)

max(�x)−min(�x)
(3.1)

in which i indicates the i-th item. After normalizing, all the features are mapped into �y

with the same scale, and thus become comparable.
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In multimedia information retrieval, the roles of textual feature space and visual feature

space are complementary. Textual information better represents the semantic meaning,

while visual knowledge plays a dominant role at the physical level. They are separated

by the semantic gap, which is the major obstacle in content-based image retrieval. In this

chapter, we present an innovative approach to bridge the semantic gap and allow easy

transformation from one space to another.

4.1 Representing keywords

For online images and their descriptions, the textual description is a projection of the narra-

tor’s perception of the image content. However, there are difficulties using only text features

to retrieve mixtures of image/textual contents: perception is a subjective matter, the same

impression could be described through different words. Moreover, calculating text similar-

ity (or distance) is difficult - distance measurements (such as cosine distance in TF/IDF

space) do NOT perfectly represent the distances in human perception. For instance, from

a customer’s perspective, ‘relaxed-cut’ is similar to ‘regular-cut’ and quite different from

‘slim-cut’. However, they are equally different in terms of textual representation (e.g. in

vector space model).

To make up for the deficiency of pure text search or pure CBIR approaches, we ex-
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Figure 4.1: some items that has the keyword “dotted” in their descriptions.

plore the connections between textual and visual feature subspaces. The text description

represents the narrator’s perception of the visual features. Therefore, items share similar

descriptions may also share some consistency in selected visual features. Moreover, if the

consistency is observed over a significant number of items described by the same keyword,

such a set of features and their values may represent the human “visual” perception of the

keyword. In addition, if items with different descriptions demonstrate a different value dis-

tribution on these selected visual features, we can further confirm the correlation between

the terms in the textual description and these visual features.

For instance, let us look at the items with the keyword “dotted” in their descriptions

(some examples are shown in Figure 4.1). Although they come from different categories

and different vendors, they all share very unique texture features. On the other hand, they

all differ a lot in other features, such as color and shape. It indicates that the term “dotted”
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is particularly used to describe certain texture features. When a user searches with this

term, her intention is to find such texture features, not about color or shape. In this way,

many terms could be connected with such a “visual meaning”. In iLike , the first step is to

discover such “visual meanings” automatically.

Base representation. Suppose there are N items sharing the same keyword, and each

item is represented by a M -dimensional visual feature vector: �Xk = (xk1 , xk2 , . . . , xkM )T ,

where k ∈ [1, N ]. The mean vector of the N feature vectors could be utilized as a base

representation of the keyword in the visual feature space:

�μ = (
1

N

N∑
k=1

xk1 ,
1

N

N∑
k=1

xk2 , . . . ,
1

N

N∑
k=1

xkM )T

When N is large enough, �μ will preserve the common characteristics in the image features

and smooth over the various sections. In such a manner, the mean vector is rendered as

a good representation of the keyword. However, those N feature vectors may not share

consistency over all visual features, hence, not all dimensions of the mean vector make

sense. As shown in the “dotted” example, those items are only similar in some texture

features, while they differ a lot in color and shape features. Such consistency/inconsistency

on the feature is a better indicator of the significance of the feature towards human per-

ception of the keyword. Therefore, a more important task is to quantify such consistency

or inconsistency.
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4.2 Weighting visual features

As shown in the “dotted” example, features coherent with the human perception of the

keyword tends to have consistent values; while other features are more likely to be diverse.

To put it another way, suppose that we have two groups of samples: (a) positive: N1 items

that have the keyword in their descriptions, and (b) negative: N2 items that do not contain

the keyword. In this way, if the meaning of a keyword is coherent with a visual feature,

its N1 values in the positive group should demonstrate a different distribution than the N2

values in the negative group. Moreover, the feature values in the positive group tend to

demonstrate a small variance, while values in the negative group are usually diversified.
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Figure 4.2: Examples of “good” feature distributions.

Figure 4.2 demonstrates the value distribution of eight different texture features for the

keyword “dotted”. In the figure, blue (solid) lines represent distributions of the positive

samples, while red (dashed) lines represent the distributions of negative samples. Note that

sample sets are fitted to normal distributions for better presentation in the figure. However,

when we quantitatively compare both distributions, we do not make such assumption. For

the selected textures features, distributions of the positive samples are significantly different
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from negative samples (e.g. items described by the keyword is statistically different from

other items in these features).
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Figure 4.3: Examples of “bad” feature distributions.

On the contrary, the two distributions are indistinguishable for some selected color and

shape features (Figure 4.3). As the “dotted” features vary in color in shape, products in

a variety of categories of products have such pattern (i.e., there are “dotted” ties, skirts,

bags, and pajamas, which are demonstrated in Figure 4.1). The diversity and randomness

of these features makes them less representative for the “dotted” features. In other words,

the selection of the color and shape features based on keyword “dotted”, is similar with

random sampling over these features across the whole population.

As we can see from Figure 4.2 and Figure 4.3, there are still overlaps between the

distributions of positive and negative samples. This indicates that there are items visually

similar to the positive items on those “good” features, but they do not have the particular

keyword (e.g. “dotted”) in their descriptions. In the experimental results in chapter 5, we

will show that iLike is able to retrieve such items without getting false hits (e.g. items with

similar colors to the positive samples, but not the “dotted” texture).
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The difference between two distributions could be quantitatively captured by running

Kolmogorov-Smirnov test (K-S test) [Conover, 1998] across each dimension of feature vec-

tors. The two sample K-S test is commonly used for comparing two data sets because it is

nonparametric and does not make any assumption on the distribution. The null hypothe-

sis for this test is that the two samples are drawn from the same distribution. For n i.i.d

samples X1, X2, ...Xn with unknown distribution, an empirical distribution function can be

defined as follows:

Sn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < X(1)

k
n
, if X(k) ≤ x < X(k+1), k ∈ {1, 2, ..., n− 1}

1, if x ≥ X(n)

where X(1), X(2), · · ·X(n) are ascending values. The K-S statistic for a given function S(x)

is

Dn = max
x

|Sn(x)− S(x)|

The cumulative distribution function K of Kolmogorov distribution is

K(x) = 1− 2
∞∑
i=1

(−1)i−1e−2i2x2

=
2π

x

∞∑
i=1

e−(2i−1)2π2/(8x2).

It can be proved that
√
nDn =

√
nmaxx |Sn(x) − S(x)| will converge to the Kolmogorov

distribution [Conover, 1998]. Therefore if
√
nDn > Kα = Pr(K ≤ Kα) = 1 − α, the null

hypothesis for the K-S test will be rejected at confidence level α.

Similarly, to determine whether the distributions of two data sets differ significantly,

the K-S statistic is

Dn,m = max
x

|Sn(x)− Sm(x)|

38



and the null hypothesis will be rejected at level α if

√
nm

n+m
Dn,m > Kα (4.1)

The P-value from the K-S test is used to measure the confidence of the comparison

results against the null hypothesis. Back to our scenario, for each keyword, a P-value is

calculated at each dimension of the feature vector. Features with lower P-values demon-

strate statistically significant difference between positive and negative groups. For instance,

The P-values for the features shown in Figure 4.2 are: 0, 3.901 × 10−319, 2.611 × 10−255,

5.281×10−250; and for Figure 4.3 are: 2.103×10−1, 1.539×10−5, 8.693×10−4, 1.882×10−5.

As we can see, items described by the keywords have significantly different values in those

features, compared with items that are not described by the keyword. Therefore, such

features are more likely to be coherent with visual meaning of the keyword, and hence

more important to the human perception of the keyword. On the contrary, items with and

without the keyword have statistically indistinguishable values on other visual features,

showing that such features are irrelevant with the keyword.

In this way, we can use the inverted P-value of the K-S test as the weight of each visual

feature for each keyword. Note that P-values are usually extremely small, so it is necessary

to map the value to a reasonable scale before using it as weight. Ideally, the mapping

function should satisfy the following requirements: (1) it should be a monotone decreasing

function: lower P-values should give higher weight; (2) when the variable decreases under

a threshold (conceptually, small enough to be determined as “statistically significant”), the
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function value decreases slower. Therefore, we apply two steps of normalization. First, we

designed a mapping function:

f(x) =
arctan(−log(x)− C) + arctan(C)

π

where C = (max(x) −min(x))/2. It is then followed by a linear scaling to map the data

range from to (0, 1), rendering itself as the weight vector of the keyword.
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Figure 4.4:
Weight vectors for terms “pattern” (upper left), “orange” (upper right),
“decorated” (lower left), and “cute”. (lower right)

By re-weighting visual features for each keyword, we amplified the features that are
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significant for the keyword, while faded out the others. As an example, Figure 4.4 shows

the normalized weight vectors computed from keywords “pattern”, “orange”, “decorated”,

and “cute”. In the figure, the X axis represents visual features (as introduced in chapter

3): dimensions (1-32) are texture features: contrast, correlation, homogeneity, coarseness,

direction, moment invariant etc.; (33-112) are texture features from the frequency domain:

Gabor texture, Fourier descriptors, etc.; (113-239) are shape features: shape invariant

moments, edge directions, moments of characteristic function and phase congruency; and

(240-401) are color features: color moments and color histogram. Note that we group the

visual features as above just for the convenience of discussion, and those groups of features

might be overlapping with each other. In the figure, a large value (higher weight, lower P-

value) are generated by statistically different positive and negative samples, indicating that

the feature is more likely to have some kind of association with the human perception of

the term. From the figures, we can see that some texture features show more significance

in representing the keyword “pattern”, while the visual features of keyword “orange” is

primarily captured by color features. In this way, when user queries with term “pattern”,

we can infer that she is more interested in texture features, while local color and shape

features are of less importance. Most importantly, we can further retrieve items with similar

visual presentation in such features, but do not have the particular term (“pattern”) in their

descriptions.

On the other hand, it is difficult to imagine or describe the human visual perception

for some keywords. Fortunately, our approach is still capable of assessing such perceptions.
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For instance, Figure 4.4 also shows the weight vectors for terms “decorated” and “cute”.

It is not easy for a user to summarize the characteristics of “cute” items. However, when

we look at the figure, the visual meaning is obvious. “Cute” items share some distinctive

distributions in the color and shape features, while they are diversified in intensity and

high frequency textual features.

4.3 Visual thesaurus

Thesauri are widely used in information retrieval, especially in linguistic preprocessing and

query expansion. Although manually generated thesauri have higher quality, the developing

process is very labor-intensive. Meanwhile, we can automatically generate thesauri using

statistical analysis of textual corpora, based on co-occurrence or grammatical relations

of terms. In iLike, we generate a different type of thesaurus – a visual thesaurus, based

on the term distributions in the visual space, i.e., the statistical similarities of the visual

representations of the terms.

In iLike, two terms are similar in terms of “visual semantics” if they are used to describe

visually similar items. Since each term is used to describe many items, the similarity is

assessed statistically across all the items described by both terms. In particular, the visual

representation (mean vector) and weight vector for two terms t1 and t2 are denoted as

M -dimensional vectors: �μt1 , �μt2 , �ωt1, �ωt2 , respectively. The similarity between t1 and t2 is
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defined as the cosine similarity of two weighted mean vectors:

sim(t1, t2) =

∑M
i=1(μt1,i × ωt1,i)× (μt2,i × ωt2,i)

(
∑M

i=1 μt1,i × ωt1,i)× (
∑M

i=1 μt2,i.× ωt2,i)
(4.2)

In this formula, each term vector (in visual feature space) is weighted by its weight vector,

so that only values of statistically meaningful components are preserved. In this way, we are

able to compute the semantic similarities between text terms, and such semantic similarities

are coherent with human visual perception in this particular application domain. We also

observe that some non-adjective terms demonstrate moderate similarity with many other

terms. We eliminate the high frequency terms through post-processing. We are also able to

compute antonyms, which are terms having a similar set of significant feature components

but carrying consistently opposite values on such features, i.e. their weight vectors are

similar, but weighted mean vectors are different.

Examples of synonyms and antonyms are shown in Figure 4.5. As we can see, weight

vectors of terms “pale”, “white” and “grey” are quite similar, indicating that they are

related to a similar set of visual features in human perceptions (in this case, mostly color

features). Meanwhile, the weighted mean vectors of “pale” and “white” are similar, while

that of “grey” is very different.

We calculate the term-wise similarity across the dictionary, to generate a domain-specific

“visual thesaurus” or a “visual WordNet”. Some examples are shown in Table 4.1. This

thesaurus could be used for query expansion for existing text-based product search engines,

or in many other information retrieval applications.

43



0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TextureGabor ShapeCF PC Color
w

ei
gh

t

pale

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TextureGabor ShapeCF PC Color

w
ei

gh
te

d 
m

ea
n

pale

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TextureGabor ShapeCF PC Color

w
ei

gh
t

white

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TextureGabor ShapeCF PC Color

w
ei

gh
te

d 
m

ea
n

white

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TextureGabor ShapeCF PC Color

w
ei

gh
t

grey

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TextureGabor ShapeCF PC Color

w
ei

gh
te

d 
m

ea
n

grey

Figure 4.5:
Weight vectors (left) and weighted mean vectors (right) for terms
“pale”, “white” and “grey” (from top to bottom).
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Table 4.1: Visual thesaurus
Words First Few Words in Visual Thesaurus
swirl whimsical, dots, button-down, motif, geometric, tree, mosaic, tropical
pattern border, tropical, tree, geometric, lively, print, abstract, patchwork
designed spirit, accented, texture, finish, frame, good, fashion, takes, ideal, framed
silky cinched, scooped, softly, wraps, draping, elastane, fitted, fashioned, finely
necklace sassy, impeccably, star, garter
lingerie boyshort, garter, trunk, slimmer, canvas, ankles, dance, prom, impeccably
swimwear beaches, rings, halter, beach, ring, sexier, created, glass, ocean, bottoms
stylishly topstitching, grosgrain, level, tan, t-shirts, brown, lurex, sublimely
fits detailing, adds, fabulous, clothing, wearing, designer, sister, nape, posh
shoes shoe, outsole, kicks, slide, foot, strappy, sneakers, footbed, loafer

4.4 Weight vector optimization

As we have introduced, product descriptions could be very subjective due to personal

tastes. Different narrators/retailers may use different words to tag similar objects. Due to

the existence of synonyms, we observe false negatives in the negative sets. A false negative

is an item that: (1) is actually relevant to the term, (2) demonstrates similar visual features

with the positive items, (3) is described by a synonym of the term, not the term itself, and

hence is categorized in the negative set of the term. As shown in the “good” features in

Figure ??, we still observe overlaps in the feature value distribution of negative and positive

samples. Such overlaps will reduce the weight of the corresponding feature towards any of

the synonym terms, and possibly decrease search performance.

The domain-specific visual thesaurus can help us find both synonyms and antonyms. By

merging items described by synonyms, we can decrease the number of false positive items

caused by those synonyms, hence, we can observe higher consistency on significant features,

and get higher weights out of it. In iLike, we first generating an initial visual thesaurus
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Figure 4.6: Sample feature distributions of antonyms.

for all the terms in the dictionary. Next, for each term, we add the items described by

its top synonyms into its positive set. A high threshold is enforced in determining the top

synonyms, so that we do not introduce false positives into the positive set. We re-calculate

the new weight vector according to the updated positive/negative sets. An example of the

value distribution (normalized) of a color feature of the positive and negative sets identified

by terms “pale” and “cream” are shown in Figure 4.6 (dashed lines). The distribution of

the positive and negative sets from the combined set are also shown. For demonstration,

we normalized the distributions that the areas under each curve is 1. We can see that the

feature distribution of the combined positive set is cleaner and narrower. By iteratively

combining similar keywords in the visual thesaurus, we can improve the quality of the

weight vectors. Our experiments have shown that the number of synonyms to be merged

decreases significantly after each iteration.
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4.5 Feature quality and correlation

In CBIR, the entropy of low-level visual features is widely used for feature selection and

image annotation. While they are effective in some scenarios, such algorithms share one

common disadvantage: the semantic gap. In iLike, we reemploy this problem by utilizing

the entropy of feature weights across all keywords.

In section 4.2, we have generated a weight vector for each keyword, measuring the

significance of each image feature dimension towards the keyword. Intuitively, a visual

feature that is significant for a number of keywords is a “good” feature, while a visual

feature that is in-significant for all keywords is a “bad” feature. Practically, we do not find

any feature that is significant for (almost) all keywords. If such a feature existed, it would

not be a good feature since it would not represent any distinctive visual meaning.
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Figure 4.7: Feature quality.
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In this way, for each feature, we collect weight values across all keywords (i.e. the ith

component of all weight vectors). The entropy of each collection of weights is used as a

quality assessment of the particular feature. The feature-quality curve is shown as Figure

4.7 (a). On the other hand, Figure 4.7(b) and (c) demonstrates the weight histogram for

two difference features. As we can see, the feature shown in Fig 4.7(b) has higher weights

for some terms, while the feature in Fig 4.7(c) has low weights for all terms. That is to say,

the first feature is able to distinguish the positive and negative sets for some terms, while

the other feature does not work well for any term. The first feature is certainly better than

the other one. Figure 4.7 also shows that most of the selected features demonstrate good

quality, except for a few color features (e.g. those with much lower entropy in Figure 4.7

(a)). This is consistent with the CBIR literature.

On the other hand, features may be correlated. In iLike, if two features are significant for

a similar set of keywords, and insignificant for the others, they are somewhat correlated. To

quantitatively study the correlations among the selected visual features, we calculated the

pair-wise Pearson product-moment correlation coefficient (PMCC) for all the features, and

the results are shown in Figure 4.8, in which black denotes maximum correlation, and white

denotes no correlation. We can see that features are mostly independent, with moderate

correlations among same type of features. We observe stronger correlations among CF and

PC features. Such correlations introduce some computational overhead in iLike, but the

impact on search precision is very limited.
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Figure 4.8: Feature correlation.

4.6 Query expansion and search

As we have introduced, in iLike, we first employ classic text-based search to obtain an initial

set (since users could only provide text queries). For each keyword in the user query, the

system loads its corresponding weight vector, which is generated off-line. Weight vectors

from query terms are combined to construct the query weight vector �ωQ, which represents

user intention in the visual feature space. For each item in the initial set, we use its visual

features to construct a base query �qi. We also obtain an expanded weight vector �ωE from

its textual description. Therefore, given a query q, the new query corresponding to the i-th

item in the initial set is:
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�q′(Itemi, Query) = �qi.× (α · �ωQ + β · �ωE) (4.3)

where .× indicates component-wise multiplication. Practically, β is set to a much smaller

value than α, to highlight the intention from users. In the new query, features that are

insignificant to the search terms carry very small values. Hence the new query could be

used to search the item database on the basis of their Euclidean distances, without further

enforcing the weights.
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5.1 Settings

We have implemented iLike on a database crawled from eight fashion shopping sites. We

obtain a 401-dimensional visual feature vector from the main product image for each item.

Both the visual and textual feature pre-processing are carried out on an off-line basis. For

each user query, we calculate the initial result set based on text-based retrieval, and display

in the title row of output. For each item in the initial set, we expand the user query with

the textual and visual features from the item, and enforce the weight vector which infers

user intention. The query expansion parameters α, β in Equation 4.3 are set to 0.9, 0.1,

respectively. The search results using expanded and weighted query is displayed in columns,

with the original item (from initial result set) in the title row.

To evaluate iLike, we use traditional Content-Based Image Retrieval approach as a

baseline. The baseline approach employs the same visual features and product database

as iLike does, with the only difference in that CBIR skips query expansion and feature

weighting. Once the original image feature vector has been obtained, the baseline algorithm

ranks the retrieved items according to the Euclidean distance between two vectors in the

visual space.
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5.2 Search examples
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Figure 5.1:
Search results for query ”printed”: (a) user selection from the initial
set; (b) iLike query vector and the top 2 results; (c) Baseline (CBIR)
query vector and the top 2 results;

Figure 5.1 shows an example of iLike and baseline results of query “printed”. As shown

in Figure 5.1(b), the iLike query highlights the features that are coherent with the search

term “printed”, and fades out features that are insignificant to the search term. We can

see that the items retrieved by iLike share some local texture features (i.e., “printed” pat-

terns). Meanwhile, although items in the CBIR result set (Figure 5.1(c)) are visually

similar with the initial selection, they do not exhibit any relevance with the query term

(“printed”), instead, local color and shape features dominates visual similarities. We can

see that iLike successfully captures the user intention behind the search term, picks up a

smaller subset of visual features that are significant to such intention, and yields better

search results. Figure 5.2 shows more examples with different queries. For queries like

“pattern” and “swirl”, iLike identifies the local texture features in the frequency domain,

as the relevant features, while for queries like “yellow” and “orange”, the color features are

identified as the more relevant ones. Thus it can be seen that iLike is capable of under-
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standing the intention behind the query terms and is able to select relevant features that

yield search results consistent with human perceptions.

Q:“pattern” iLike Top 2 CBIR Top 2 Q:‘yellow” iLike Top 2 CBIR Top 2

Q:“ swirl ” iLike Top 2 CBIR Top 2 Q:‘orange” iLike Top 2 CBIR Top 2

Figure 5.2: Illustrative examples of search results.

Table 5.1: Name of similar items returned by iLike with keyword “printed”
Q Black printed jersey caftan dress Short sleeve printed tunic top
1 Lemongrass floral silk v-neck dress Flutter short sleeve striped tee
2 Navy printed silk racerback dress Crochet scoopneck burnout tee
3 Black geometric printed sateen dress Short sleeve plaid snap front
4 Lagoon sequined mesh racer dress Printed mesh drop-waist bubble dress
5 Charcoal studded jersey panel dress Short sleeve embroidered scoopneck top
6 Grey plaid belted ruffle shirt dress Sleeveless Braided Scoopneck Top

On the other hand, compared with text-based search, iLike significantly increases recall

by yielding items that do not contain query terms in their textual descriptions. Table 5.1

shows two groups of item names returned by iLike with query “printed”. Except for the

initial results set (retrieved by text-based search), there are only 1 items that contains the

query term in title or description fields. All other items are retrieved by content-based

image search. Figure 5.3 provides a comparison of the search results returned by both
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iLike and the baseline search methods for the query “ruffle shirt”.

To sum up, most of the results demonstrate patterns that fits our perception of the

query terms. Especially, (1) not all the returned items have the term in the descriptions;

they are retrieved by visual features. (2) if we only use the visual features from initial

result set (row 1) as the query, the results will drift away from user intention. Many other

items has higher overall visual similarity with the items in the initial set. Thanks to the

weighting approach, we are able to infer the implicit user intention behind the query term,

pick up a smaller subset of visual features that are significant to such intention, and yield

better results.

5.3 User study

To further evaluate iLike, we design and implement a user evaluation system to gather

feedbacks of the performance of iLike and the baseline approach. The effectiveness of

iLike by combining textual and visual features in product search is the focus of this study.

We conduct iLike and baseline searches on the same data resources, and record user inputs

as ground truth for each search.

First, 50 distinct adjective and noun keywords, which are commonly used to describe

certain features of apparels, are employed to initiate different searches. These initiating

keywords are evenly distributed in the visual feature space, i.e., describing texture, shape

or color features. Next, 5 items from the initial result set (items from the title row) of each

keyword are randomly selected as query images to be evaluated. The top 10 results from
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Figure 5.3:
(a) iLike search results for query “ruffle shirt”; (b) Baseline search re-
sults for query “ruffle shirt”
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iLike and baseline for each query image, together with 20 randomly selected items from the

same category, are saved for user evaluation. Therefore, for each query and seed item, we

prepare up to 40 item images for evaluation.

Twenty participants from the University of Kansas are invited to evaluate the system.

All participants have had experiences of using web search engines for several years, including

online shopping experiences. Each of them is asked to evaluate at least five distinct queries.

Specifically, for each query and seed image set, a participant is provided with the prepared

item images (displayed in random order), and he/she is asked to mark items that he/she

determines to be relevant to the query. Data from both server logs and user behavioral

logs (time stamps) are recorded and analyzed for system evaluation.

Table 5.2: Overall performance of iLike and Baseline
TP TN FP Precision Recall

iLike 574 406 353 0.59 0.62
baseline 476 504 451 0.48 0.51

Table 5.2 shows the statistics of comparing iLike with traditional CBIR. In the table, a

true positive (TP) is a retrieved item (from iLike or CBIR) that is marked as relevant by

the evaluators; a false positive is a retrieved item that is marked as irrelevant by the user.

Figure 5.4 shows the average Precision-Recall Curve of iLike and CBIR. In the evaluation,

98 distinct queries are evaluated by 20 users. 927 of all the retrieved items have been

identified by users as relevant, in which 574 are captured by iLike and 406 by the baseline

approach. The overall precision and recall of iLike outperform CBIR by 21%, indicating

that iLike is better at perceiving user’s “visual” intentions behind search terms.
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Figure 5.4: Average Precision-Recall Curve.

Figure 5.5 (a) and (b) shows the average precision and recall rate at different retrieval

indexes. The statistical results illustrate a significant and stable difference between iLike and

the baseline approach in both the number and coverage of the retrieved relevant items,

which is in full support of the qualitative analysis in section 5.2.

To evaluate the robustness of iLike, we then compare iLike with the baseline approach

across different queries. Figure 5.6 shows the R-Precision histograms for all the 98 dis-

tinct queries. An R-Precision histogram presents the differences between the precision

of iLike and baseline at recall point R. A positive bar means that iLike outperforms the

baseline approach on this query. From the 5-precision histogram (upper) we can see that

iLike achieves better precision for the majority of queries; with R increasing (lower), the

precision of iLike still keeps on top of CBIR. These results are in agreement with Figure

5.5 (a). However, there are some queries where iLike performs worse than CBIR in both
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Figure 5.5: (a) precision-rank curve, (b) recall-rank curve.
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Figure 5.6:
Precision Histogram RPA/B(i) = RPA(i) − RPB(i); Upper: R=5,
Lower: R=10.
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5-precision and 10-precision, i.e., query 25 (“voile”), 31 (“crinkle”), 43 (“metallic”) and

76 (“polka”), etc. One common feature of those terms could be the complicated “visual”

meaning, which is difficult for users to interpret. It is equally possible that users who partic-

ipate in the evaluation do not fully understand such terms, and therefore choose “relevant”

items without considering the keywords, making iLike fail in capturing these intentions.
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Content-based image retrieval, as a field, has grown tremendously in the last decade. Un-

fortunately, the research community still struggle to develop and implement scalable CBIR

systems, which means that the core problems remain unsolved. In this thesis, we compre-

hensively survey, analyze and compare current progress of image retrieval in terms of the

indexing techniques involved. We overview the image processing approaches for feature

extraction. We also discuss significant challenges involved in the adaptation of existing

image retrieval techniques that can be useful for bettering understanding user intentions.

This thesis proposed iLike, a vertical search engine for apparel shopping. The goal of the

research, as discussed, is to explore the possibilities of bridging the semantic gap between

the high-level semantic content and low-level visual features. Compared with existing

research, we take a different approach that focuses on learning the association between

textual and visual features from a very-large scale data set. With the extreme popularity

of social media, we are able to collect a large image database with reasonable-quality labels.

We first extract both textual features and low-level image features from the collected

data set to identify associations between visual features and textual features at the level

of image vs. text. However, due to the existence of the semantic gap, such associations

make little sense at object/region vs. term level. We then propose a statistical learning

model to discover the inherent connections between the concepts behind textual terms with

regions and low-level visual features from images, i.e. to map textual entities into visual
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feature space. Particularly, we build a computational model with a text-guided weighting

scheme to extract concepts from textual terms, and link them with features extracted from

images. Such weighting scheme infers user intention from query terms, and enhances the

visual features that are significant towards such intention.

Experimental results show that iLike is effective and capable of bridging the semantic

gap. Through the comprehensive user study, iLike has demonstrated outstanding perfor-

mance for a large number of descriptive terms. In some cases, it does not work well for some

keywords (mostly non-adjectives). Many of such words have abstract meaning and are very

unlikely to be included in user queries (e.g. zip, logo). To sum up, by combining textual

and visual features, iLike manage to pick “good” features that reflect users’ perception, and

therefore is effective for vertical search.
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