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Abstract

Many problems in artificial intelligence require adaptively making a sequence of de-
cisions, each based on the information obtained so far. As an example, consider
interactive troubleshooting, where one can perform many tests on the system in ques-
tion, and the goal is to adaptively conduct a small set of tests that are sufficient for
making the correct diagnosis. Another example is active perception in robotics, where
the goal is to localize a certain object by exploring the environment via some sensing
actions, such as touch or vision. Understanding how to effectively acquire information
under partial observability is fundamental for developing intelligent adaptive systems.
Unfortunately, most of the existing techniques for solving such problems are either sim-
ple heuristics which do not strive for optimality or principled non-myopic approaches
that are difficult to scale to larger problems.

To ease the tension between theory and practice, this dissertation pursues the funda-
mentals of adaptive information acquisition, with the goal to devise a mathematical and
algorithmic framework for efficient (in terms of computational complexity) and robust
(in terms of decision quality and noise-tolerance) decision making under uncertainty.
From the theoretical perspective, we look into different problem settings, where it is
challenging to characterize the value of information due to complex constraints and
modeling assumptions, such as indirect information, uncertain inputs, delayed feedback
in parallel systems, and incomplete knowledge about the model. We provide new the-
oretical insights and develop novel algorithms for solving such problems. From the
practical perspective, we demonstrate strong empirical performance for our proposed
algorithms on a number of problem instances, including Bayesian experimental design
for behavioral economics, interactive troubleshooting, active preference learning, active
touch-based localization, and active object detection for biodiversity monitoring.

More specifically, in Part II of this dissertation, we investigate sequential algorithms
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which aim to optimize the value of information. We first look into a basic variant of the
adaptive information acquisition problem, where the goal is to learn the value of some
target random variable through a sequence of conditionally independent, possibly
noisy tests. Here, the value of information is defined in terms of the informativeness of
the tests performed, measured by Shannon’s mutual information. We provide the first
rigorous analysis of the greedy algorithm that holds under the persistent noise setting.

In most practical applications, collecting information is not the goal of its own, but
rather a means for making informed decisions. We further investigate novel, efficient
objectives for such problems which are amenable to greedy optimization. In particular,
we propose novel surrogate objectives that are: (1) aligned with the value of information
problem (2) efficient to evaluate and (3) adaptive submodular. This latter property enables
us to utilize an efficient greedy optimization while providing strong approximation
guarantees. Our algorithms achieve the state-of-the-art performance on a few problem
instances including a real-world robotic manipulation task.

Moving beyond the previous settings, we seek to generalize our theoretical insight
of constructing submodular surrogates for solving more general sequential decision
problems. We propose a principled approach to active object detection and show
that for a rich class of base detection algorithms, one can derive a natural sequential
decision problem for deciding when to invoke expert supervision. We demonstrate the
effectiveness of our algorithm on several object detection problems.

Part III of this dissertation aims to address some practical challenges of the adaptive
information acquisition problem. For instance, in many practical scenarios, fully
sequential selection could be infeasible. We study information-parallel learning and
decision making. We prove that, for stochastic optimization problems which exhibit
adaptive submodularity, a simple approach which greedily selects examples within a
batch and assembles batches in a greedy manner, is competitive with the optimal batch-
mode algorithm. Under certain assumptions, it is even competitive with the optimal
sequential algorithm. Moreover, in practice, the underlying model that defines the
objective function may be unavailable. We investigate the online sequential information
acquisition problem, where parameters of the probabilistic model are initially unknown,
and can only be learned from data in an online fashion. We establish a rigorous bound
on the expected regret (defined in terms of the value of information) of our framework
and demonstrate our algorithm on an online interactive troubleshooting application.
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Zusammenfassung

Viele Probleme der künstlichen Intelligenz erfordern das Treffen einer Reihe von
Entscheidungen, wobei jede Entscheidung auf den bislang gewonnenen Informationen
basiert. Ein Beispiel hierfür ist die interaktive Fehlersuche, bei der eine Vielzahl an Tests
in einem untersuchten System ausgewertet werden können; das Ziel ist jedoch, adaptiv
eine geringe Anzahl an Tests auszuwählen, welche ausreichend sind um die richtige Di-
agnose zu stellen. Ein anderes Beispiel ist die gesteuerte Wahrnehmung in der Robotik,
die das Ziel hat ein bestimmtes Objekt zu lokalisieren, indem die Umgebung mit
visuellen oder haptischen Sensoren untersucht wird. Für die Entwicklung intelligenter,
adaptive Systeme ist das Verständnis der effizienten Informationsgewinnung unter
eingeschränkter Beobachtbarkeit von fundamentaler Bedeutung. Bedauerlicherweise
sind die meisten existierenden Lösungsverfahren für diese Probleme entweder einfache
Heuristiken, die keine optimale Lösung anstreben, oder basieren auf nicht-myopischen
Herangehensweisen, welche sich schlecht auf Massendaten skalieren lassen.

Um die Differenzen zwischen Theorie und Praxis zu reduzieren, untersucht diese
Dissertation die Grundlagen der adaptiven Informationsgewinnung, mit dem Ziel ein
mathematisches und algorithmisches Framework für effiziente (in Sinne der Berechen-
barkeit) und robuste (im Sinne der Qualität der getroffenen Entscheidungen und gegen
statistisches Rauschen) Informationsgewinnung unter statistischer Unsicherheit zu
entwerfen. Von einem theoretischen Standpunkt aus untersuchen wir verschiedene
Problemstellungen, wobei aufgrund komplexer Randbedingungen und Annahmen
an das Modell, wie indirekter Informationen, unsicherer Eingaben, verzögerter Rück-
meldungen in parallelen Systemen und unvollständigem Wissen über das Modell,
die Herausforderung darin besteht, den Wert der gewinnbaren Informationen zu
beschreiben. Wir präsentieren neue theoretische Erkenntnisse und entwickeln neuartige
Algorithmen fuer das Lösen der zuvor beschriebenen Probleme. Von einer praktis-
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chen Perspektive aus demonstrieren wir herausragende empirische Ergebnisse unserer
entwickelten Algorithmen auf unterschiedlichen Probleminstanzen. Die betrachteten
Probleminstanzen umfasse unter anderem bayessche statistische Versuchsplanung
in der Verhaltensökonomie, interaktive Fehlersuche, aktives Lernen von Vorlieben,
aktive Lokalisierung mit Berührungssensoren, und aktive Objekterkennung für die
Überwachung einer Artenvielfalt.

In Teil II dieser Dissertation untersuchen wir insbesondere sequentielle Algorithmen,
die darauf abzielen den Wert der Informationen zu optimieren. Zuerst untersuchen wir
eine einfache Variante des Problems der adaptiven Informationsgewinnung, mit dem
Ziel basierend auf einer Sequenz von bedingt statistisch unabhängigen, möglicherweise
verrauschten, statistischen Tests, den Wert einer bestimmten Zufallsvariable zu lernen.
Hierbei wird der Informationswert der ausgeführten Tests mit Hilfe von Shannons
Transinformation gemessen. Wir stellen die erste rigorose Analyse eines Greedy-
Algorithmus vor, die auch unter persistentem statistischen Rauschen gilt.

In den meisten praktischen Anwendungen ist die Informationsgewinnung nicht das
eigentliche Ziel, sondern ein Hilfsmittel um informierte Entscheidungen zu treffen.
Daher untersuchen wir neue, effiziente Zielfunktionen für derartige Probleme, welche
mittels Greedy-Algorithmen (approximativ) optimiert werden können. Insbesondere
schlagen wir neue Ersatz-Zielfunktionen vor, welche (1) direkt mit dem Problem der
Informationsgewinnung zusammenhängen (2) effektiv auszuwerten und (3) adaptiv
submodular sind. Die letztgenannte Eigenschaft erlaubt es uns effektive Greedy-
Optimierungsmethoden mit guten Approximationsgarantien anzuwenden. Unsere
Algorithmen erzielen Ergebnisse auf dem neusten Stand der Technik auf verschiedenen
Probleminstanzen, unter anderem bei der Steuerung von echten Robotern.

Über die vorangegangenen Problemstellungen hinaus ist es unser Ziel unsere theo-
retischen Einblicke in die Konstruktion von submodularen Ersatz-Zielfunktionen zu
verallgemeinern und somit das Lösen allgemeinerer, sequentieller Entscheidungsprob-
leme zu ermöglichen. Wir schlagen eine prinzipielle Herangehensweise für aktive
Objekterkennung vor, und leiten ein natürliches sequentielles Entscheidungsproblem
für das Einbringen von Expertenwissen her. Wir demonstrieren die Effektivität unseres
Algorithmus auf mehreren Objekterkennungsproblemen.

Teil III dieser Dissertation hat das Ziel einige praktische Herausforderungen des Prob-
lems adaptiven Informationsgewinnung zu lösen. Zum Beispiel ist in vielen praktischen
Szenarien eine konsequent sequentielle Entscheidungsfindung nicht umsetzbar. Wir
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untersuchen wie Informationen parallel gelernt und Entscheidungen parallel getroffen
werden können. Wir zeigen das für stochastische Optimierungsprobleme mit adaptiver
Submodularität eine einfache Greedy-Herangehensweise, welche nach dem Greedy-
Prinzip Beispiele aus einem Stapelspeicher auswählt und diese nach dem gleichen
Prinzip aufbaut, mit dem optimalen Stapelspeicher-Modus Algorithmus vergleich-
bar ist. Trifft man weitere Annahmen, ist er sogar mit der optimalen sequentiellen
Strategie vergleichbar. Des Weiteren ist in der Praxis oft das der Zielfunktion zugrun-
deliegende Modell nicht verfügbar. Wir untersuchen das sequentielle Problem der
Online-Informationsgewinnung mit unbekannten statistischen Parametern, die nur von
den Daten während der Interaktion gelernt werden können. Für unser Framework
beweisen wir eine Schranke für den Erwartungswert des Regrets (definiert mit Hilfe
des Informationswerts) und demonstrieren die Anwendung unseres Algorithmus im
Fall der interaktiven Fehlersuche.
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Part I

Introduction and Background

1





1
Introduction and Overview

We are awash in a deluge of data today. A massive amount of information is being
generated at unprecedented scale in social, financial and scientific applications [Agr+12],
and has been utilized to drive nearly every aspect of our modern society. While the
promise of having the data is significant for most machine learning applications, there
are many technical and ethical issues that must be addressed to fully leverage its
potential. A crucial bottleneck for data analysis is the limited capability of accessing and
processing the existing data, due to bandwidth, power, budget, computational, or legal
constraints. Besides, much of this data might not be useful, and a small subset can be
sufficient for making decisions. This leads to the following fundamental question in
artificial intelligence:

How should we efficiently acquire the most useful information
for decision making, when we are given limited resources?

As illustrated in Fig. 1.1, the optimal information acquisition problem has been exten-
sively studied in many areas, including optimal experimental design, machine learning
(active learning in particular), decision theory, operations research, multi-agent systems,
sensor networks, and robotics. In many of these problems, one needs to adaptively
make a sequence of decisions on which information to acquire next, taking into account
the information collected in previous rounds.
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Figure 1.1: Some application domains of the optimal information acquisition problem.

Finding the optimal solution for information acquisition requires solving challenging
stochastic optimization problems. In most cases, the objective functions for these
problems are highly non-convex, and many of them are provably computationally
intractable [LGM98]. Among existing techniques for solving such problems, most of
them are either heuristics approaches which do not strive for optimality (e.g., uncertain
sampling), or principled approaches that are difficult to scale to larger problems (e.g.,
non-myopic approaches for solving probabilistic planning problems). Both types of
solutions could be problematic in practice. Therefore, it becomes of crucial importance
to identify a class of such sequential decision problems, where we can develop tractable
approximations of the optimal solution.
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This dissertation pursues the fundamentals of adaptive information acquisition, with
the goal to devise a mathematical and algorithmic framework for efficient (in terms of
computational complexity) and robust (in terms of decision quality and noise-tolerance)
decision making under uncertainty. Motivated by the demands of applications, it
addresses the following five questions:

1. Due to insufficient knowledge about the environment and measurement noise,
uncertainty is often an inseparable part of our models and observations. In
the presence of uncertain observations, how can we characterize the trade-offs
between reliability and efficiency?

2. The true value of data lies not just in having it, but in harvesting it for making
effective decisions. How can we design computationally tractable objectives for
large-scale decision problems under partial observability?

3. Existing approaches for adaptive information acquisition are inherently sequential:
One label is observed after the other. Is it possible to parallelize this process (e.g.,
having access to multiple labeling resources)? How can we exploit information
parallelism for adaptive decision making?

4. In practice, the model that defines the objective function may be unknown to the
algorithm and may have to be estimated online through experimentation. When
the parameters of the model is not specified, how can we trade off acquiring
information that is useful for learning the model (exploration), and acquiring
information that is useful for making decisions (exploitation)?

5. While one focus of this dissertation is to devise fundamentally new algorithms, an
equally important component is to demonstrate the effectiveness of the proposed
algorithms and models in real-world applications. Which classes of applications
are suited for adaptive decision making?

The above questions are stated in a fairly abstract manner. In the following, we will
elaborate on theses questions through a few concrete examples. Afterwards we will
state the main contributions of this dissertation.
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Chapter 1. Introduction and Overview

w

(a) Active learning (b) Experimental design (c) Recommendation

(d) Active perception (e) Objection Detection

Figure 1.2: Examples of the Optimal Value of Information problem

1.1 Optimizing Value of Information

Let us consider the following applications:

• Active learning. Active learning [Set12; DL11] is a machine learning paradigm
that allows active acquisition of training data (in terms of labeled data instances, or
labeled features). For example, let us consider the active instance labeling problem:
Given a set of unlabeled data instances, and some prior distribution on the
underlying classifier, the goal is to learn a classifier by carefully requesting as
few labels as possible. In the example shown in Fig. 1.2a, if we want to learn a
linear separator to distinguish the two classes in the 2-D plane, we may only need
to request the three highlighted examples in order to infer the correct decision
boundary.

• Sequential experimental design and active testing. Experimental design [Lin56]
aims at predicting the outcome of some phenomenon, by performing a series of
carefully designed, informative experiments (See Fig. 1.2b). A typical application

6



1.1. Optimizing Value of Information

domain of experimental design is medical and clinical research, where trails and
experiments are performed to assess the safety and efficacy of some new product
(e.g., new drug or device) in development. One can also think of medical diagnosis
[Kon01; Ber+10], where a doctor can choose from a large set of medical tests, and
she aims to administer a small subset of tests on the patient that will enable her to
provide effective treatment. Similarly, in troubleshooting [HBR94], there are many
tests one can perform on the system in question, and the goal is to run a small set
of tests that provide sufficient information for repairing the system.

• Active recommendation. The goal of recommender systems is to predict the
preference of a user based on user’s profile (e.g., social profile, browsing history,
etc.). In movie recommendation (See Fig. 1.2c), for example, the system aims to
suggest a movie from a certain genre of interest, based on the user’s ratings of her
previously watched movies. To get enough information for an accurate prediction,
the system may propose movies to the user for feedback, e.g., by explicitly asking
her ratings of the movies, or by proposing pairs of movies to the user and asking
which one she prefers [GLS08].

• Active perception. A common task in robotic manipulation is active localization,
i.e., to localize an object by exploring the environment via some sensing actions,
such as touch or vision [FBT98]. Imagine the task of pushing a button with the
finger of a robotic end effector (See Fig. 1.2d). The robot can probe a location
through guarded moves [WG75], where the end effector moves along a path until
a contact is sensed. After sensing contact, the robot gets to know that there are
certain object locations which could not have produced the contact, e.g. if they
are far away. Here the goal is to design a sequence of probing actions so that it
can gather enough information to guarantee success in pushing the button.

• Active detection. Efficient detection of multiple object instances is one of the
fundamental challenges in computer vision. One way to enhance the performance
of existing object detection algorithms is to have a (human) expert in the loop
to provide feedback on the detection results, e.g., whether/ how the detection
should be improved. To make the best use of such labeling resources, one needs
to decide when to invoke the expert, such that the best possible performance can
be achieved while requiring a minimum amount of supervision.
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Chapter 1. Introduction and Overview

In all above scenarios, we wish to acquire a “useful” subset from a collection of
examples, or tests, based on some objective that quantifies the value of a subset. We call
the general class of information acquisition problems the optimal value of information
problem. In the following, we introduce several different settings of the problem and
present our contributions.

1.1.1 Sequential Information Maximization

Suppose we want to acquire information about some target hypothesis which is en-
coded by random variable Y. Intuitively, we want to perform a sequence of tests that are
most informative about Y. This setting naturally maps to applications such as medical
diagnosis (performing medical tests that are most informative about the patient’s con-
dition), recommendation (proposing a set of pair-wise comparison queries to identify
the most relevant movie), active learning (selecting informative data instances to query,
e.g., for learning a classifier), and numerous others.

A priori vs. sequential selection Maximizing the informativeness of a set of random
variables (i.e., test outcomes) has a rich history in machine learning [Lut85; Mac92a]. It
is perhaps best understood in the a priori selection setting, where the set of all tests to
be executed is determined ahead of time, i.e., before any observations have been made.
It is known that the problem of selecting a set of most informative tests of restricted
cardinality is in general NP-hard [KLQ95]. By leveraging the theory of submodular
functions [NWF78], Krause and Guestrin [KG05] showed that under some conditions,
near-optimal solutions can be identified efficiently. In particular, under the assumption
that the test outcomes are conditionally independent given the target variable Y, the
informativeness of a set of tests can be modeled as a submodular function, and therefore
a simple greedy algorithm leads to a 1− 1/e approximation of the optimal solution.

In many applications, however, it is more natural to consider sequential selection. For
example, in medical diagnosis, it is natural for a doctor to conduct a medical test based
on the results of all previous tests (See Fig. 1.3). Comparing with the a priori selection
setting where we specify all tests in advance (an open-loop selection), a sequential
(close-loop selection) algorithm chooses a possibly different set of tests depending on the
outcomes of the tests. Such adaptation provides an informational advantage, allowing
to obtain more information than committing to all tests ahead of time.
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…

(a) Medical diagnosis

highnormal

bone injurypneumonia

(b) Adaptive strategy for performing tests

Figure 1.3: Illustration of a sequential selection strategy for medical diagnosis.

The most informative selection criterion. A natural approach that finds widespread
use in practice is the Most Informative Selection (MIS) criterion which, in each step,
greedily picks the test that provides the maximal reduction in uncertainty (quantified
in terms of Shannon entropy [Sha48]) about the target variable Y, conditioned on the
observations gathered so far. Despite its widespread use, not much is known about the
theoretical properties of this greedy algorithm, in particular in the practically important
setting where observations are noisy. With this, a key question we want to answer is:

When does the most informative selection criterion perform (provably) well?

A general framework to study the performance of greedy algorithms is adaptive sub-
modularity [GK11a]. It is known that if a sequential problem is adaptive submodular,
then greedily optimizing it results in near-optimal performance. Unfortunately, the
MIS criterion violates the adaptive submodularity condition and hence does not fall
within this framework. In the case where tests are noise-free (i.e., their outcomes are
deterministic functions of Y), it is known that greedily optimizing mutual informa-
tion is effective [Das05b; ZRB05]. Under the noisy setting, however, the theoretical
performance of the most informative selection criterion is much less well understood.

In §3 of this dissertation, we present the first rigorous information-theoretic analysis
of the MIS criterion that holds even under persistent noise. Specifically, we consider
a general probabilistic model, where the originally deterministic tests are corrupted
by some arbitrary noisy channel. We derive a lower bound on the reward achieved by
MIS in terms of a channel separability condition, a simple measure that characterizes the
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Chapter 1. Introduction and Overview

severity of noise. We further provide an example to show that such measure is important
in the bound. It follows from our results that under common assumptions made about
the noise (e.g., symmetric flips of the binary outcome), the sequential information
maximization criterion behaves near-optimally. Hence our results theoretically justify
why the mutual information criterion has been found to be effective in these settings.
Our analysis also sheds light on cases where greedy information maximization may
fail, and thus nonmyopic policies, e.g., using look-ahead, might be required.

1.1.2 Information Gathering for Decision Making

While acquiring the “most informative” tests is useful, say, for reducing the uncertainty
of some phenomenon of interest, in many applications collecting information is not
the goal of its own, but rather a prerequisite for making informed decisions. In §4 of this
dissertation, we aim to explore the question:

How can we adaptively acquire information, so that we can make effective decisions?

highnormal

bone injurypneumonia

acetaminophensurgery

drink fluidsantibiotics

light

Figure 1.4: Illustration of a two-stage decision-making strategy.

Decision making under uncertainty can be viewed as a two-stage problem where in the
first stage information is gathered, and in the second stage decisions are made based
on the acquired information. We illustrate such processes with the medical diagnosis
example in Fig. 1.4: a doctor first performs a sequence of medical tests to gather enough
information about the symptoms, and in the end decides how to treat the patient.
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Figure 1.5: Efficient active touch-based localization. DiRECt achieves the state-of-the-art
performance, but is more than five times faster.

Submodular surrogates for value of information. In contrast to objective functions
for estimation (such as reduction in Shannon entropy), the value of information objective
for decision making is typically highly non-submodular: Often, we may require multiple
observations to even consider changing our decision, violating the diminishing returns
condition. In fact, for optimizing value of information in general, standard greedy
algorithms can perform arbitrarily poorly [GKR10a].

In this dissertation, we demonstrate that it is possible to efficiently construct a surrogate
objective function for the optimal value of information problem. In particular, we
propose an equivalent formulation, which we call the Decision Region Determination
(DRD) problem, and provide a principled framework for addressing it. Our algorithm,
DiRECt, relies on a surrogate objective function which is adaptive submodular, and
can therefore be greedily optimized. It is designed in a way that optimizing the
surrogate provably leads to improvements in the decision performance. We evaluate our
algorithm on four applications: a touch-based localization application on a real robot
platform [Jav+13], a Bayesian experimental design task intended to distinguish among
economic theories of how people make risky decisions [Ray+12], an active preference
learning task via pairwise comparisons [KIM12], and an adaptive management task
for biodiversity conservation [RCL11]. Our experimental results show that DiRECt
significantly outperforms myopic value of information in most settings (see Fig. 1.5 to
preview our result on the touch-based localization application).

Efficient optimization of value of information. While our submodular surrogates-
based approaches show promising performance in several applications, it can still be
computationally challenging when deployed in real-world scenarios. In many data-
intensive decision-making applications, evaluating these surrogate objectives can be
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expensive: At each iteration, one needs to perform a greedy search over the tests
and find the one that myopically maximizes the expected gain in the corresponding
objective, whose runtime depends linearly on the size of the support of the probability
distribution over the outcomes of all tests. With the size of the support growing
exponentially in the number of tests, it is often computationally prohibitive to work
with the original distribution. In this dissertation, we employ a dynamic hypothesis
enumeration strategy and show that with sufficient amount of samples, one can
identify a near-optimal decision with high probability. Our approach, comparing to
prior sampled-based work, leverages the structure of the probabilistic model, and
thereby offers increased efficiency and better approximation guarantees. Our empirical
results show that one can efficiently run the submodular surrogate-based approaches
with our hypothesis enumeration strategy, while achieving much better performance
comparing with commonly-used heuristics (we observe a 16% improvement in terms
of the average cost on a real-world online troubleshooting platform).

Dealing with i.i.d. noise. The near-optimal performance guarantee of DiRECt relies
on the assumption that the observed outcomes of selected tests are noise-free. It means
that, for example, in medical diagnosis, observing the outcome of a medical test would
rule out the possibility of a particular disease. However, due to observation error in
practical scenarios, a more realistic setting is to consider noisy tests.

We introduce ECED, a novel algorithm for Bayesian active learning and decision making,
and prove strong theoretical guarantees with noisy test outcomes. We demonstrate the
compelling performance of ECED on two real-world problem instances, including
comparison-based preference learning [KIM12] and Bayesian experimental design for
preference elicitation in behavioral economics [Ray+12]. We prove that when the test
outcomes are binary, and the noise on test outcomes are mutually independent, then
ECED is guaranteed to obtain near-optimal cost. We develop a theoretical framework for
analyzing such sequential policies. The key insight is to show that ECED is effectively
making progress in the long run as it picks more tests, even if the myopic choices of
tests do not have immediate gain in terms of reducing the uncertainty of the target
variable.
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1.1. Optimizing Value of Information

1.1.3 Other Applications

In the previous discussion, we explained that it is possible to construct a surrogate
function for the decision-theoretic value of information problem. Moving beyond the
two-stage process (i.e., in the first stage we collect information; in the second stage we
make a final decision based on the information acquired), a key question that we are
interested in is:

Can submodular surrogate functions be developed for solving
more general sequential decision problems?

We show that the technique of constructing submodular surrogates for non-submodular
problems is generally useful for adaptive information acquisition problems. In §5,
we focus on the active detection application (see Fig. 1.6a). Different from the two-
stage decision-making process, in this problem, the phases of information gathering
(e.g., querying candidate detection to get useful feedback) and decision making (e.g.,
proposing candidates that are most likely to be an actual object) are interleaved. Hence,
it requires us to trade off gathering information and maximizing utility.

(a) Sequential detection of multiple objects
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Figure 1.6: Sequential object detection: which location to query next?

We propose a principled approach to the active object detection problem, and show
that for a rich class of base detection algorithms, one can derive a natural sequential
decision problem for deciding when to invoke expert supervision. We further show
that the objective function satisfies adaptive submodularity, which allows us to obtain
strong performance guarantees for our algorithm. We demonstrate the performance of
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Chapter 1. Introduction and Overview

the proposed algorithm on three real-world tasks, including a problem for biodiversity
monitoring from micro UAVs in the Sumatra rainforest. In Fig. 1.6b we show a preview
of our result for this biodiversity monitoring application. Our results show that active
detection not only outperforms its passive counterpart; for certain tasks, it also works
significantly better than the straightforward application of existing active learning
techniques.

1.2 Practical Challenges

1.2.1 Exploiting Information Parallelism

We have considered adaptive information acquisition as a sequential process, where
one test is picked at each iteration, and the next test cannot be picked until the outcome
of the previous test is observed. In many practical settings, however, fully sequential
selection, where the choice of the next example depends on all previous labels, is
infeasible. For example, when recruiting workers on Amazon Mechanical Turk for
crowdsourcing annotation, one usually generates tasks comprising several unlabeled
examples. Similarly, in high-throughput experimental design, it is often more cost-
effective to perform several experiments in parallel (See Fig. 1.7a).

(a) Batch selection of tests
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(b) Results: Batch-mode Active Learning

Figure 1.7: Exploiting information parallelism.

More generally, in many sequential decision problems, we would like to choose multiple
actions to be performed in parallel and receive feedback only after all actions have been
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carried out. This feedback then informs the next batch of operations. For instance, in
the viral marketing application described in §1.1, it is natural to conduct a multi-stage
marketing campaign, where each stage is informed by the observed effectiveness of
the previous stage. Similar problems arise in resource allocation in computational
sustainability [Gol+11], and vaccination problems in epidemiology [Ans+09]. These
practical challenges motivate us to investigate the following question:

How can we exploit information parallelism for adaptive decision making?

In §6 of this dissertation, we study information-parallel learning and decision making. In
particular, we tackle batch-mode active learning and more general stochastic optimiza-
tion problems, such as influence maximization in social networks, that exhibit adaptive
submodularity [GK11b]. We prove that, for such problems, a simple BatchGreedy
approach, which greedily selects examples within a batch, and assembles batches in a
greedy manner, is competitive with the optimal batch-mode algorithm. Furthermore,
we prove that perhaps surprisingly, in some natural settings, the price of parallelism is
bounded: the use of batches incurs competitively low cost irrespective of the batch size,
even when compared to a fully sequential policy. We demonstrate the effectiveness of
our approach on active learning tasks, as well as adaptive influence maximization in
social networks. Fig. 1.7b shows the performance of BatchGreedy on an active learning
task, where each batch contains ten tests. Our approach is the first to provide both
strong guarantees and compelling empirical performance for the important practical
problem of batch mode active learning, where BatchGreedy improves on random
selection by ≈ 48% more than state of the art does on our test sets.

1.2.2 Unknown Parameters: Converting Offline to Online

In the previous discussion, we assume that the objective functions defining the value of
information are either explicitly given (e.g., the MIS criterion), or constructed through
some (deterministic) algorithmic framework (e.g., the DiRECt objective). In either case,
the objective is given in terms of a probabilistic model estimated from historical data,
according to which the reward function can be computed. However, in practice, such a
model may be unavailable and may have to be estimated through experimentation (See
Fig. 1.8a).

In §7 of this dissertation, we aim to answer the following question:
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(b) Results on Troubleshooting

Figure 1.8: Converting offline to online.

How can we solve the sequential decision problems,
if we have to learn the model online?

We investigate the online sequential information acquisition problem, where parameters
of the probabilistic model are initially unknown, and can only be learned from data
in an online fashion. For instance, in troubleshooting the conditional probabilities
of symptoms given a root-cause might be unknown. For this purpose, we integrate
the offline algorithms considered in §3 and §4 into an online learning framework,
OnlineVoI, by employing a posterior sampling approach. We establish a rigorous bound
on the expected regret (defined in terms of the value of information) of our framework.
Finally, we demonstrate our online learning framework on a real-world troubleshoot-
ing platform. Our experiments under the online setting imply that our framework
encourages efficient exploration, which, combined with the sampling algorithm, leads
to effective online learning of the optimal VoI (See Fig. 1.8b to preview our result on an
online troubleshooting application).

1.3 Organization of this Dissertation

We summarize the key contributions of this dissertation in Table 1.1.

In Part I of this dissertation, we will provide background on the optimal information
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Decision-theoretical VoI
Settings

Inf. Gathering Decision Making
General notion
of “coverage”

Part I
Applications

experimental design, recommendation,
active learning, localization, etc.

viral marketing
object detection

MIS (§3)
DiRECt (§4)

ActDet (§5)Part II Sequential
ECED (§4)

Batch-mode BatchGreedy (§6)
Part III

Online OnlineVoI (§7)

Table 1.1: Summary of key contributions.

acquisition problem. We will also review existing work that is relevant to most
chapters of this dissertation; in particular, we will survey the background on active
learning, review the concept of submodularity, and review existing results on (adaptive)
submodular optimization (§2). More specific discussions of work related are presented
in the subsequent chapters.

In Part II, we will then elaborate on our approaches for the optimizing value of
information for the adaptive information acquisition problem, including problems of
sequential information maximization (§3), information gathering for decision making
(§4) and active object detection (§5). We also report results obtained by applying
existing algorithms for the adaptive information acquisition problems considered in
this dissertation.

In Part III, we investigate algorithms addressing the practical challenges. In §6, we
develop algorithms for batch selection (i.e., parallelization) of the adaptive stochastic
optimization problem. In §7, we look into settings where parameters of the models are
initially unknowns, and propose an online learning framework for optimizing value of
information.

Lastly, in Part IV we present our conclusions of this dissertation (§8) and propose a few
interesting directions for future work.
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1.4 Publications Relevant to this Dissertation

This dissertation is based on materials from the following conference publications and
technical reports.

• Yuxin Chen, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. “Sequential
Information Maximization: When is Greedy Near-optimal?” In: Proc. International
Conference on Learning Theory (COLT). 2015 (§3)

• Yuxin Chen, Shervin Javdani, Amin Karbasi, James Andrew Bagnell, Siddhartha
Srinivasa, and Andreas Krause. “Submodular Surrogates for Value of Informa-
tion”. In: Proc. Conference on Artificial Intelligence (AAAI). 2015 (§4)

• Yuxin Chen, S. Hamed Hassani, and Andreas Krause. “Near-optimal Bayesian Ac-
tive Learning with Correlated and Noisy Tests”. In: Proc. International Conference
on Artificial Intelligence and Statistics (AISTATS). 2017 (§4)

• Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos, Lian Pin Koh, Serge Wich,
and Andreas Krause. “Active Detection via Adaptive Submodularity”. In: Proc.
International Conference on Machine Learning (ICML). 2014 (§5)

• Yuxin Chen and Andreas Krause. “Near-optimal Batch Mode Active Learning
and Adaptive Submodular Optimization”. In: International Conference on Machine
Learning (ICML). 2013 (§6)

• Yuxin Chen, Jean-Michel Renders, Morteza H. Chehreghani, and Andreas Krause.
Efficient Online Learning for Optimizing Value of Information: Theory and Application
to Interactive Troubleshooting. Tech. rep. 2016 (§4, §7)

The following publication is also relevant to this dissertation. In particular, in the
following publication we introduced the HEC algorithm, which is used as a baseline
algorithm for the evaluation of DiRECt. We briefly discuss the HEC algorithm in §4.2.2.

• S. Javdani, Y. Chen, A. Karbasi, A. Krause, D. Bagnell, and S. Srinivasa. “Near-
Optimal Bayesian Active Learning for Decision Making”. In: Proc. International
Conference on Artificial Intelligence and Statistics (AISTATS). 2014
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1.5 Collaborations

This dissertation will be much different without the valuable inputs of my collaborators.
Hereby, I mention the researchers involved in the work presented in this dissertation.
Evidently, my advisor, Prof. Andreas Krause was actively involved in all the work
presented in this dissertation. The research presented in §3 and §4.5 was done in close
collaboration with Hamed Hassani, who offered invaluable inputs throughout the
projects, which turned out to play a key role in devising the theoretical framework
for analyzing MIS and ECED. Amin Karbasi actively participated in the numerous
meetings and discussions on the optimal value of information presented in §4.1.1,
which eventually resulted in the DiRECt framework. Shervin Javdani and I started
working on the DRD problem (§4.1.1) in parallel, and collaboratively we developed
HEC and DiRECt. Shervin Javdani conducted the active localization experiment in
§4.6.5. He was supervised by Prof. Drew Bagnell and Prof. Siddhartha Srinivasa from
the Robotics Institute at Carnegie Mellon University, who also provided valuable input
for this project. The dynamic hypothesis enumeration framework (§4.4) and the online
learning framework (§7) is developed in close collaboration with Jean-Michel Renders
and Morteza Haghir Chehreghani while I was visiting Xerox Research Center Europe.
Hiroaki Shioi conducted experiments on the orangutan nests detection project (§5.3.1)
as part of his Master’s thesis, and Cesar Fuentes Montesinos conducted experiments
on the PASCAL VOC 2008 dataset for person detection (§5.3.3) as part of his Master’s
thesis. Both Hiroaki and Cesar were supervised in their theses by Prof. Andreas Krause
and me. The orangutan nests images were provided by Prof. Lian Pin Koh and Prof.
Serge Wich, who also participated in discussions about the project. The results on the
adaptivity gap presented in §6.2.2 are based on unpublished work in collaboration
with Gábor Bartók, who provided the proofs of Theorem 6.6 and Theorem 6.7 on the
adaptivity gap.
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2
Background and Related Work

As a fundamental component in many application domains in artificial intelligence, the
optimal information acquisition problem has been studied in a vast extent of literature.
Roughly speaking, these approaches vary in how the usefulness of information is defined
and which optimization techniques are used. There are (i) Frequentist approaches,
such as classical optimal experimental design [AD92; BV04; DA88; Puk93] and most
active learning techniques [BBL06; Das05a], and (ii) Bayesian approaches, such as
Bayesian experimental design [Cur+88; CV95; SW97; SN11] and most decision theoretic
techniques [How66; HHM93]. In comparison with Frequentist approaches, Bayesian
approaches are in general more expressive: it allows to utilize rich probabilistic models
[KF08], by making assumptions about the likelihood of particular observations. As a
result, one can plug in generic objective functions to application specific models. In
this dissertation, we adopt the Bayesian perspective due to its expressiveness.

In this chapter, we first state the general class of adaptive information acquisition
problem (§2.1) studied in this dissertation, followed by introducing a few candidate
reward functions (§2.2) relevant to most chapters. We then provide a survey of the
related work, in particular on the optimization techniques (i.e., greedy approaches and
adaptive submodularity (§2.3), non-myopic approaches such as probabilistic planning
(§2.4)), as well as connections to active learning (§2.5) and other related areas (§2.6). We
will review additional related work that is specific to different problem settings in the
subsequent chapters.
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Chapter 2. Background and Related Work

2.1 The Adaptive Information Acquisition Problem

We begin by introducing the basic notations and terminology, and then formally state
the general class of adaptive information acquisition problems.

2.1.1 Tests, Outcomes, and Policies

Suppose we are given a finite set of tests V = {1, . . . , t} (e.g., medical tests, troubleshoot-
ing questions, nodes in a social network, or unlabeled data points), and we wish to
select a subset A ⊆ V among those tests. Each test v ∈ V is associated with some
observable random variable Xv ∈ X , where X is the set of all possible outcomes of any
test. For example, Xv may correspond to the result of a medical test, the symptom of a
malfunctioning system, the outcome of a probing action, the number of people one can
influence in a social network, or the label of a data point. Let xv denote the observed
outcome of Xv. We use XV to denote the collection of random variables {X1, . . . , Xt},
and use xV to denote their observed outcomes {x1, . . . , xt}. Similarly, let A be a subset
of the ground set V , we use XA to denote the set of random variables indexed by the
elements of A , and use xA to denote a partial realization of the tests.

We assume that the joint probability distribution P [XV ] over theses random variables
is defined in a probabilistic model. Therefore, after making partial observations xA, we
can compute a posterior distribution P [XV | XA = xA] through Bayesian inference (e.g.,
by exact inference [LS88], or Markov Chain Monte Carlo [Met+53; GG84], etc.). This
posterior distribution characterizes the uncertainty about the state of the environment,
which we can use to make decisions.

In this dissertation, we consider adaptive strategies for picking the tests. For now, let us
consider problems where we sequentially pick test a v ∈ V , get to observe its associated
outcome xv, pick the next test based on the previous observations, get to see its outcome,
and so on. Later in Part III we will consider more general strategies where we may
pick tests in batches. We encode such an adaptive strategy as a (sequential) policy
π. Formally, a policy π : 2V×X 7→ V is defined to be a partial mapping1 from partial
realizations (e.g., observation vector xA) to tests, specifying which test to run next (or
that we should stop testing if xA is not in the domain of π). Each deterministic policy

1A partial function f : X 7→ Y is a function f : X′ → Y for some subset X′ of X.
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can naturally be associated with a decision tree (see Fig. 2.1). We use the notation
S(π, xV ) to refer to the set of tests selected by π under realization xV .

v1

10

210 10

v3v2

v3 v4 v6v5 v6

p

p(∆) = v1

p({(v1, 0)}) = v2

p({(v1, 1)}) = v3

p({(v1, 0), (v2, 0)}) = v3

. . .

Figure 2.1: Illustration of an adaptive (deterministic) policy via a decision tree. Nodes
represent tests picked by the policy, and edges represent the outcomes of tests.

2.1.2 Reward and Cost

The usefulness or quality of the observed outcomes xA is defined through some reward
function f : 2V×X → R≥0, where f (xA) depends on the realization of the random
variable xV , and the chosen set of tests A. The choice of the reward function may
vary in different applications. Before deploying a policy π, the particular realizations
XV = xV are not known in advance. Therefore, it is natural to define a reward function
F that quantifies the expected value,

F(π) = ExV [ f (S(π, xV ))] = ∑
xV

P [xV ] f (S(π, xV )) (2.1.1)

where the expectation is taken over all the possible realizations XV = xV .

In practice, tests are costly (e.g., there is a cost for setting up the medical diagno-
sis/troubleshooting platform, for promoting a product, or for labeling a data point,
etc.), and we only have limited budget and resources to spend on conducting the
tests. In principle, one can incorporate the cost directly into the reward; alternatively,
we choose to model the cost into a separate set function C : 2V×X → R≥0, mapping
sets of observations to (non-negative) real numbers. Unless explicitly pointed, in this
dissertation we mainly consider additive cost functions, i.e., we assign a cost c(v) for
each test v ∈ V , and define the cost of a subset C(xA) as C(xA) = ∑v∈A c(v).
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2.1.3 Adaptive Stochastic Maximization and Coverage

Now that we have defined policy and its value, let us look at the common structure of
the adaptive information acquisition problem. There is a set of random variables, and
we follow some adaptive policy to reveal a subset of those (because there is a cost). At
some point, the policy decides to stop, and we observe a subset of observations, which
determines the value (or expected reward) of the policy. Our general goal is to design
a policy π∗, such that the expected reward F is maximized, while the cost of running
the policy cost is minimized. This is a bi-criteria optimization problem [BV04]. One
possibility is to maximize the average reward subject to some budget constraint:

π∗ ∈ arg max
π

F(π), subject to C(S(π, xV )) ≤ B wherever P [xV ] > 0. (2.1.2)

Here, B is a budget on the maximal cost of the policy. In the viral marketing example,
we would like to maximize the expected number of people influenced, by adaptively
offering free products to the most influential set of people, while not exceeding budget
B. In active learning, we would like to maximize the performance of the trained
classifier (e.g., by minimizing the expected loss), by adaptively choosing a set of data
points to label with labeling cost at most B. This problem is often referred to as the
Budgeted Adaptive Stochastic Maximization problem [GK11a].

Alternatively, we can specify a quota Q of reward to achieve, and try to find the
cheapest policy achieving the quota. We define the expected cost of a policy as the
expected number of tests it picks, i.e., costavg(π) = ExV [C(S(π, xV ))]. The problem is
then to find

π∗ ∈ arg min
π

costavg(π), subject to f (S(π, xV )) ≥ Q wherever P [xV ] > 0, (2.1.3)

In the medical diagnosis example, it is natural to think of minimizing the expected
cost of performing medical tests, so that we can treat the patient properly. Similarly,
in troubleshooting, we may want to minimize the cost of tests to fix the system
in question. Such problem is called the Adaptive Stochastic Minimum Cost Coverage
problem [GK11a]. Another variant of this problem is to minimize the worst-case
cost costwc(π) = maxxV C(S(π, xV )), i.e., the cost incurred under adversarially chosen
realizations. Optimizing the worst-case cost may be useful for some applications, since
it may be necessary to use a pessimistic analysis to guarantee safety.
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2.2 Choice of Reward Functions

By choosing different forms for the reward function f , we can model very different
classes of adaptive information acquisition problems. In this section, we introduce a
few particular reward functions, which we will examine in more detail in Part II of this
dissertation.

2.2.1 Mutual Information

Consider the task of learning the value of some unknown target random variable Y
from a set of tests. A widely used notion of informativeness is given by the reduction of
Shannon entropy [Sha48] about the target variable. In this case, the reward of selecting
tests A and observing xA is

f (xA) = H (Y)−H (Y | xA) , (2.2.1)

where H (Y) = −∑y P [Y = y] log2(P [Y = y]) denotes the Shannon entropy of the
target variable Y under the prior distribution P [Y], and H (Y | xA) denotes the Shannon
entropy of Y under the posterior distribution P [Y | xA]. This leads to the objective
function

F(π) = H (Y)−ExV [H (Y | S(π, xV ))] = I (Y; π) . (2.2.2)

Here, we use I (Y; π) to refer to the mutual information between our policy π and the
target variable Y [CT91]. This objective leads to the most informative selection criterion,
which will be examined in details in §3.

2.2.2 Decision-theoretic Value of Information

In many decision-making applications, the goal is to act upon the acquired information,
rather than to minimize the uncertainty of some latent variable. A natural formalism
for gathering decision-relevant information is the decision-theoretic notion of value of
information [How66]. In this setting, there is some latent random variable Θ which
encodes the relevant information for making a decision. In the medical diagnosis
example, Θ would encode the presence or absence of a particular disease, or the
physical condition of a patient. Upon observation of XA = xA, a decision y is made
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from a set of possible decisions Y . For example, a decision could be a particular
treatment for the patient. If the actual value of the hidden variable is Θ = θ, then this
decision would result in a utility u(θ, y). Apparently, we wish to make an optimal
decision y ∈ Y maximizing the utility u(θ, y). Since the hidden state Θ is unobserved,
the best we can do is to make the decision that maximizes the expected utility

f (xA) = max
y

Eθ[u(θ, y) | xA] . (2.2.3)

This reward function f (xA) is called the decision-theoretic value of information. Therefore,
the (expected) value of information of a policy π is then defined as

F(π) = ExV [ f (xA)] = ∑
xV

P [xV ]max
y

Eθ[u(θ, y) | S(π, xV )]. (2.2.4)

The goal of the optimal (decision-theoretic) value of information problem is then to find
a cheapest policy π∗ such that the decision-theoretic value of information is maximized.
By fixing a quota on the value of information to be achieved, we can view this problem
as an instance of the adaptive stochastic minimum cost coverage problem. We focus on
this problem in §4.

2.2.3 Other Objectives

While we primarily focus on those posterior-based objectives (i.e., we use the obser-
vations xA to compute the posterior, and then score the posterior in some way), we
also look at objectives where the value of the set of observations is quantified in other
ways. In general, most of these objectives can be interpreted as some notion of coverage.
For example, many applications have chosen ad hoc reward functions, such as the
geometric notion of coverage for adaptive sensing [Hau+12], population coverage for
information propagation in social networks [KKT03], etc. Besides these domain-specific
approaches, there are statistical methods that use more generic objective functions, such
as coverage (or reduction) of version space mass for active learning [TK01a; DKM05;
GK11b], coverage of probabilistic votes for object detection [BLK12b], etc. We will pro-
vide more details on how one can utilize such objectives for the active object detection
task in §5.
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2.3 Greedy Approaches and Submodularity

Once the objective function has been chosen, different techniques can be applied for
optimization. Perhaps the most commonly used approach in practice is to use a simple
greedy policy. Often people rely on greedy heuristics without any theoretical guarantees
[KHB07; DJ97]. However, it has been shown that there are a rich class adaptive
stochastic optimization problems for which simple greedy solutions obtain near-optimal
performance. Crucially, these objectives satisfy adaptive submodularity [GK11b], a natural
diminishing returns condition as an adaptive analog of submodularity. We will review
the relevant results for adaptive submodular optimization in this section.

2.3.1 Submodular Functions

Under the open-loop setting, many information acquisition problems as mentioned
earlier satisfy an intuitive diminishing returns property: Performing v ∈ V helps more,
if few tests have been performed, and less if many tests have already been performed.
This intuition is formalized by the combinatorial notion of submodular functions.

Definition 2.1 (Submodularity [NWF78]). A set function f : 2V → R is called submodu-
lar, if for all A ⊆ B ⊆ V and v ∈ V \ B it holds that

∆ f (v | A) ≥ ∆ f (v | B), (2.3.1)

where for any set A′,
∆ f (v | A′) = f (A′ ∪ {v})− f (A′)

is the marginal benefit of adding s to A′.

We also define monotonicity, which characterizes the property that “performing addi-
tional test never hurts”.

Definition 2.2 (Monotonicity). A set function f is called monotonic, if for all A ⊆ V and
v ∈ V it holds that ∆ f (v | A) ≥ 0.

Many information acquisition tasks can be cast as constrained submodular optimization
problems. For instance, under the open-loop setting, the classical notion of submodu-
larity has proven useful for active learning [Hoi+06a; GB11a]. In Hoi et al. [Hoi+06a],
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both individual diversity and informativeness are evaluated w.r.t. the Fisher infor-
mation (which is a submodular function). Guillory and Bilmes [GB11a] investigate
active learning on graph-structured data with graph cut objective, which is monotonic
submodular.

Examples of monotonic submodular functions also arise in many physical sensing
optimization problems, where the goal may be to find the best k locations to place
sensors in order to minimize the expected mean squared prediction error [DK08], or
to maximize the expected reduction in Shannon entropy [KG09]. Other application
domains include social networks analysis (e.g., selecting most informative blogs to cover
the biggest stories propagating over the blogosphere [Les+07]), information retrieval
(e.g., maximizing diversity of search results [YJ08], ad display for sponsored search
[RKJ08]), document summarization [LB11], and so on.

Submodularity is a natural analog of convexity [Lov83]; for example, similar to mini-
mization of convex functions, unconstrained submodular minimization is possible in
polynomial time [GLS81]. Submodular minimization has been successfully applied in
computer vision [VKR08], graphical model structure learning [CG07] and clustering
[NJB05]. In contrast to convex maximization, which is generally very hard, one signifi-
cant advantage of submodularity is the existence of strong approximation algorithms
for maximization. One seminal result is due to Nemhauser, Wolsey, and Fisher [NWF78]:
Suppose we would like to find an optimal set A of k observations (e.g., sensor locations)
maximizing f (A). Then the simple greedy algorithm, which iteratively adds the ob-
servation v ∈ V \ A to the current set A that maximizes the reward f (A∪ {v}) until k
observations have been selected, achieves a constant fraction of (1− 1/e) ≈ 63% of the
value attained by the optimal solution to this NP-hard optimization problem [NWF78].
In addition, submodularity can be exploited to speed up the greedy algorithm [Min78;
Les+07], incorporate more complex constraints [KG07; NW81], and allow robustness
[Kra+09] etc.

2.3.2 Adaptive Submodularity

The classical notion of submodularity is limited from a decision-theoretic standpoint, in
a way that it requires us to commit to all decisions that we will make ahead of time, in
an open-loop fashion. Interestingly, many objective functions arising in active learning
problems satisfy adaptive submodularity (c.f. [GK11b]), a generalization of the classical
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Figure 2.2: Adaptive Submodularity: for all xA � xB and v /∈ B it holds that ∆ f (v |
xA) ≥ ∆ f (v | xB). In words, it implies that the gain of item v, in expectation over its
unknown label, can never increase as we gather more information.

notion of submodularity to the adaptive setting. As a discrete analog of convexity,
in many ways (adaptive) submodularity is a minimal assumption needed to ensure
(approximate) tractability. To define adaptive submodularity, we need to extend the
definition of the marginal benefit ∆ f of an item v to be conditioned on observations:

Definition 2.3 (Conditional Expected Marginal Benefit). Suppose we have picked tests
A and have observed outcomes xA. The conditional expected marginal benefit of a test
v, conditioned on having observed xA, is defined as

∆ f (v | xA) = ∑
xv

P [Xv = xv | xA] [ f (xA+v)− f (xA)] , (2.3.2)

where A+ v is the short-hand notation for the A∪ {v}.

We further introduce the notion of subrealization: We call xA a subrealization of xB,
denoted by xA � xB iff xB contains all observations of xA, and possibly some more.
The definition of adaptive submodularity is given as follows.

Definition 2.4 (Adaptive Submodularity). A set function f : 2V×X → R≥0 is adaptive
submodular with respect to distribution P [XV ], if for all subrealizations xA � xB and
v /∈ B it holds that

∆ f (v | xA) ≥ ∆ f (v | xB).

The definition of adaptive monotonicity is given as

Definition 2.5 (Adaptive Monotonicity). A set function f : 2V×X → R≥0 is adaptive
monotone with respect to distribution P [XV ], if for all subrealizations xA � xB and
v /∈ B it holds that ∆ f (v | xA) ≥ 0.

As illustrated in Figure 2.2, adaptive submodularity is defined with respect to policies
(as opposed to sets in the classical setting) that take observations into account. In
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particular, we require that the expected marginal benefit associated with any particular
querying action never increases as we make more and more observations. One way
to see how adaptive submodularity generalizes the classical concept is by interpreting
sets as extremely simple policies that ignore observations (and thus don’t branch). The
same goes for adaptive monotonicity.

2.3.3 The Adaptive Submodular Optimization Framework

A natural approach for adaptive information acquisition is to use a greedy policy. Let
us denote the adaptive greedy policy as πg. At each iteration, πg aims to myopically
increase the expected reward per unit cost, given its current observations. Formally, we
define the expected increase in objective value as follows.

Therefore, if we have observed xA, the greedy policy will select the test v maximizing
∆ f (v | xA)/c(v). The pseudocode of the adaptive greedy algorithm for the adaptive
maximization problem (Problem 2.1.2) is given in Algorithm 1.

Algorithm 1: The adaptive greedy algorithm.

1 Input: Budget B; groundset V ; Distribution P [XV ]; Reward function f ; Cost C;
begin

2 A← ∅, xA ← ∅;
while C(xA) ≤ B do

foreach v ∈ V \ A do
3 Compute ∆ f (v | xA) = ∑xv P [Xv = xv | xA] [ f (xA+v)− f (xA)];

end
4 Select v∗ ∈ arg maxv∈V\A ∆ f (v | xA)/c(v);

5 Set A ← A∪ {v∗}, xA ← xA ∪ {xv∗};
end

6 Output: Set A ⊆ V with C(xA) ≤ B

end

To adapt Algorithm 1 to the adaptive stochastic min-cost cover problem (Problem 2.1.3),
we simply modify the stopping condition (i.e., the precondition for the while loop in
line 3) to be f (xA) ≥ Q, such that we keep selecting items as prescribed by πg until
achieving the quota Q on objective value.
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Golovin and Krause [GK11b] show that if the reward function f is adaptive submodular
and adaptive monotone with respect to the given prior distribution P [XV ], then for
both the adaptive submodular maximization and the min-cost coverage problems, the
adaptive greedy policy πg (Algorithm 1) is guaranteed to be competitive with the
optimal policy.

Theorem 2.6 (Adaptive Submodular Maximization under Cardinality Constraint [GK11b]).
Let f be an adaptive monotone and adaptive submodular function with respect to the distri-
bution P [XV ]. Suppose we run πg with budget k. Then for any policies π∗ under the same
budget,

F (πg) > (1− 1/e) F (π∗) ,

where recall F(π) := ExV [ f (S(π, xV ))] is the expected reward of π.

Theorem 2.7 (Adaptive Submodular Min-cost Cover [GK11b]). Suppose that f is adaptive
monotone and adaptive submodular with respect to the distribution P [XV ], and there exists
Q such that f (xV ) = Q for all xV . Let η be any value such that f (xA) > Q − η implies
f (xA) = Q for all xA. Let δ = minxV P [xV ] be the minimum probability of any realization.
Let π∗ be an optimal policy minimizing the expected cost of items selected to guarantee every
realization is covered. Then, the expected cost of the greedy policy

costavg(π
g) ≤ costavg(π

∗)
(

log
Q
δη

+ 1
)

.

Theorem 2.6 and Theorem 2.7 strictly generalize the result of Nemhauser, Wolsey, and
Fisher [NWF78] for submodular set functions. These results are very promising, in
the sense that they allow characterizing a particular class of optimization problems
under partial observability – generally considered notoriously hard – in which efficient
algorithms achieve provable guarantees. Due to this fact, adaptive submodularity has
been exploited to analyze certain greedy adaptive information acquisition algorithms.
For example, Golovin and Krause [GK11b] show that for active learning, the reduction
in version space probability mass is adaptive submodular, and prove that the adaptive
greedy algorithm is a near-optimal querying policy, recovering and generalizing results
of [KPB99a; Das05b] in the learning theory literature. Furthermore, one can utilize an
accelerated adaptive greedy algorithm applicable to all adaptive submodular functions,
which directly uses the diminishing returns property to skip reevaluation of tests, often
leading to orders of magnitudes improvement in performance in practice.
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Despite these initial, encouraging results, closed-loop submodular optimization remains
far less well explored in comparison with the open-loop setting. In many practical
scenarios, one can not immediately adopt the adaptive submodular optimization
framework due to a number of modeling and computational requirements, such as a
known object function which is adaptive submodular, a known prior over a small set of
discrete states which can be explicitly enumerated, its limited capability of dealing with
noisy test outcomes, etc. We will look into some of these issues, and provide solutions
in Part II of this dissertation.

2.3.4 Other Greedy Frameworks for Adaptive Optimization

The Adaptive Worst-case Greedy Algorithm Adaptive stochastic minimum cost cov-
erage (Problem 2.1.3) is related to the (Noisy) Interactive Submodular Set Cover problem
[GB10; HY15], which considers the worst-case setting (i.e., there is no distribution over
states/realizations; instead, states are realized in an adversarial manner). Under such
setting, Guillory and Bilmes [GB10] consider a worst-case greedy algorithm, which at
each step selects the test with maximal worst-case benefit-cost ratio, and prove a log-
arithmic approximation guarantee for the worst-case cost of such greedy algorithm.
Their results rely on the notion of pointwise submodularity: a function f : 2V×X → R≥0 is
pointwise submodular if f (A, xV ) is submodular in A for any fixed realization xV . It is
worth pointing out that neither adaptive submodularity nor pointwise submodularity is
a strict generalization of the other. While pointwise submodularity is, in general, easier
to work with (as one can directly use all standard tools for the analysis of submodular
set functions), adaptive submodularity allows deriving bounds on both the average
and worst-case policy cost by utilizing the prior P [XV ].

The Adaptive Dual Greedy Algorithm The adaptive greedy policy of Algorithm 1
generalizes the greedy algorithm for the (open-loop) subset selection problems [Wol82]
(e.g., the classical submodular maximization problem, or the submodular set cover
problem). Another well know greedy heuristic under the open-loop setting is the
dual greedy algorithm by Fujito [Fuj00], which is based on the dual of Wolsey’s LP
formulation for submodular set cover (SSC) [Wol82]. The dual greedy algorithm works
by setting dual variables greedily to make the dual constraints tight. Since each of
the dual constraints corresponds to some test v ∈ V in the primal problem, running
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the dual greedy algorithms determines an ordering of tests, based on which the SSC
solution is constructed. Based on this work, Deshpande, Hellerstein, and Kletenik
[DHK14] propose an adaptive extension of the dual greedy algorithm, namely Adaptive
Due Greedy, and prove an α approximation guarantee for the expected cost. Here, α

depends on the cover constructed by the algorithm (e.g., α = 3 for the stochastic version
of the min-Knapsack problem).

Randomized Greedy Algorithms We have seen that a simple, deterministic greedy
policy is useful for maximizing adaptive monotone submodular functions. However,
adaptive monotonicity may not always hold. For example, in some applications, it
may be more natural to formalize Problems 2.1.2 and 2.1.3 as a scalarized (adaptive
maximization) problem [BV04], e.g., by maximizing the difference between reward and
cost, which could lead to non-monotone objective functions.

Unfortunately, the deterministic, discrete greedy algorithm can not handle non-monotone
objectives. Under the open-loop setting, Buchbinder et al. [Buc+12] introduce a (ran-
domized) Double Greedy algorithm, which achieves a 1/2 approximation ratio for
unconstrained submodular maximization. It maintains two dynamic sets, and in every
step, both sets agree (through randomization) whether to include (or exclude) an
element in the solution, up to the point where all elements are examined and both sets
are identical. Intuitively, randomization is helpful in a sense that it “smooths out” the
decisions by not committing to any decisions which are only marginally better.

For the constrained problems, Buchbinder et al. [Buc+14] propose a simple randomized
greedy algorithm, which retains the same tight guarantee of 1− 1/e for monotone
objectives, while giving an approximation of 1/e for general non-monotone objectives.
These results are recently generalized to the adaptive setting [GKK15].

Other Greedy Frameworks Analogous to the adaptive submodularity framework
for adaptive stochastic submodular optimization, Chan and Farias [CF09] consider a
different class of adaptive optimization problems, which is called the Stochastic Depletion
problems, and show that a greedy policy achieves a 1/2 approximation of the optimal
adaptive policy. Interestingly, one can reduce such setting to capture the stochastic
constrained submodular maximization problems, under simple constraints such as
cardinality or partition matroid constraints [Cal+07]. However, the general class of the
problems is motivated by applications from stochastic optimal control, such as dynamic
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product line design (where a firm must dynamically adjust the assortment of products
it offers for sale) and stochastic broadcast scheduling (where one must decide which
page to broadcast to which group of users). Hence the general line of analysis for these
problems are not designed for solving the adaptive information acquisition problems
considered in this dissertation.

2.4 Non-myopic Approaches and Probabilistic Planning

Besides those greedy, myopic policies which could be tailored for (closed-loop) sub-
modular optimization, there are also non-greedy techniques, which aim at finding
the optimal solution. In stochastic optimal control, the decision-theoretic value of in-
formation is known as reward functions in Partially Observable Markov Decision Process
(POMDPs) [SS73], a general framework that captures many adaptive optimization prob-
lems under partial observability. In principle, algorithms for planning in POMDPs can
be employed for optimizing value of information. Unfortunately, solving POMDPs is
PSPACE-hard [PT87], and hence many heuristic search methods without any guarantees
have been widely applied [PGT06b; Ros+08].

It is known that the complexity of planning in POMDPs grows exponentially in the
cardinality of the state space. For the problems that we consider in this dissertation, the
state space grows exponentially with the number of variables (i.e., tests), hence resulting
in computational complexity which is doubly exponential in the number of variables.
In practice, the idea of using samples to speed up planning has been explored, e.g.,
POMCP [SV10] which is based on Monte Carlo tree search that samples from states and
action histories, and DESPOT [Som+13] which samples scenarios for evaluation of all
policies at each iteration. However, these approaches require significant computational
resources to generate a finite set of policy to be evaluated. Consequently, they are
limited to short planning horizons and relatively small state and action spaces. In
contrast, this dissertation aims to design algorithms which could scale to even larger
problems. While these POMDP solvers will often use samples to look ahead in the
search tree, our results – as we will see in Part II– implies that we do not need to do
that, because a simple greedy search (based on some surrogate objective) is already
near-optimal.
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2.5 Background on Active Learning

The problem of optimal information acquisition has received a lot of attention in the
machine learning community in terms of active learning (AL). It has been studied in the
context of active instance labeling or active feature evaluation, depending on the objectives
of learning: the former is to output a hypothesis by querying data instances (e.g., AL
for classification [TK01a]); the latter is to output the value of a instance by actively
querying its features (e.g., decision tree learning, or learning with attribute costs [Mit97;
KKM05]). Despite the different semantics, structurally the problems are the same,
and the goal is to learn a model with small error probability, by using as few labeled
examples as possible.

There has been a vast body of work on active learning in the literature, both in
theory and applications (for a comprehensive survey see Settles [Set12]). Theses
approaches usually differ in the goals and assumptions. In this section, We outline a
few variations of active learning problem and highlight some of those works relevant
to this dissertation.

2.5.1 Variants of Active Learning Settings

Pool-based AL vs. stream-based AL Active learning algorithms are generally an-
alyzed under two settings: the pool-based setting and the stream-based setting. In the
pool-based setting, the entire set of unlabeled data is available for querying, and the
learner can evaluate and rank the entire pool before selecting the best query (examples
include text classification [TK01b], image [TC01] and video retrieval [Hau+06], speech
recognition [THTS05], and medical diagnosis [Liu04], etc). In the stream-based setting,
unlabeled data points arrive in a stream, and the learner must decide whether to ask
for their labels or discard the data points, (example applications include spam filtering
[Chu+11], streaming document classification [BBB13], and video surveillance [Loy+12],
etc.). The stream-based setting is appropriate when it is not possible to postpone
selection of data points, for instance, due to storage or timing constraints. A special
case of the stream-based setting is called the secretary setting [Fer89; BHZ10], in which
one must decide immediately whether or not to select a data point at each arrival. What
lies in between the secretary and pool-based settings is the case where we can postpone
deciding whether or not to query a data point by keeping it in a limited amount of
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memory, and at any time query the labels of the stored data points. Algorithms falling
into this category are in general also considered as stream-based algorithms.

The adaptive information acquisition problems we study in most chapters are most
closely related to the pool-based setting with a Bayesian prior on a (finite) set of hy-
potheses. For example, similar to the MIS criterion we consider in §3, MacKay [Mac92a]
and Cohn [Coh94] propose to pick data points that maximize expected information
gain, either in terms of entropy or variance of the estimates. Different from their results
which focus on evaluating different selection criteria, we consider the theoretical aspect,
where we prove near-optimal guarantees for the adaptive optimization problems.

Noise-free vs. noisy labels Some theoretical results in active classification assume
that the observations (i.e., labels of examples) are noise-free. In this case, there is
some hypothesis achieving zero error on the data set, and we can use any informative
querying strategy to guide the learning process, without the need to worry about the
distribution it induces: any inconsistent hypothesis can be eliminated based on a single
query, regardless of which distribution this query comes from. Such noise-free setting
is also referred to as realizable setting.

In contrast, a more practical setting is with noisy tests, which is also known as the non-
realizable setting, where the optimal hypothesis may not be in the hypothesis class. Even
worse, a hypothesis that performs badly on the queried set may well be the optimal
hypothesis with respect to the input distribution. This is because of the sampling bias:
those actively selected data points are no longer independent and identically distributed
(i.i.d.), and thus the results obtained in the passive setting no longer apply.

Depending on how noise is generated, active learning has been considered under the
non-persistent noise setting (where the outcome of each test is corrupted independently
at random), as well as the persistent noise setting (where repeating a test is impossible,
or will produce identical observations). The non-persistent noise setting can essentially
be reduced to the noise-free setting, simply by repeating each test a sufficient number
of times and using the majority of the answers as a proxy for the true outcome [Kää06;
Now08] (e.g., if tests have binary outcomes with noise rate α, then by Chernoff’s bound
[Che81], one can repeat each test O

(
log 1/δ

(1/2−α)2

)
times to obtain the true outcome with

probability 1− δ). In contrast, the persistent noise setting deals with more stringent, yet
practically important noise scenarios: For example, experiments might be systematically
biased due to environmental conditions; experts providing labels could make consistent

36



2.5. Background on Active Learning

mistakes. Such noisy setting is often less straightforward to analyze. If we make no
assumption on the noise or the error rate of the optimal hypothesis, then the noisy
setting is also known as the agnostic setting [BBL06; Han07a; Han07b; DHM07; ZC14].
Beside the fully agnostic setting, there are also many other models which require
moderate assumptions on the noise, e.g., low noise around the decision boundary
[Tsy04; BBZ07; HY14].

Sequential vs. batch-mode. Under the sequential setting, an active learning algorithm
chooses labeled examples one by one, each based on the labels of previously selected
examples. Instead, batch-mode active learning algorithms [Hoi+06a; GB11a] select a set
of examples to be labeled simultaneously. The motivation behind batch active learning
is that in some cases it is more cost-effective to request labels in large batches, rather
than one-at-a-time. This is true when the cost of labels is sublinear. For instance, if
acquiring a label requires running a time-consuming laboratory experiment, or if there
is a warm-up time for the equipment, it may be significantly cheaper to run a set of
experiments at once. Such setting is also referred to as Buy-in-bulk learning [YC13].
Batch-mode learning algorithms can be in full batch (i.e., open-loop, non-adaptive
selection) or partial batches (i.e., closed-loop selection but with multiple queries at each
iteration). We investigate both sequential and batch-mode settings in this dissertation.

Active learning vs. active search. As described earlier in this section, classical active
learning aims to learn a low error model (e.g., a function for classification or regression)
using as few queries as possible. This can be interpreted as active learning at training
time. In contrast, for some other practical applications, we may not seek to learn the
model accurately, but only to find the examples with the maximal cumulative value. For
example, in recommender systems, we may only care about identifying the positive
examples in the class of our interest with a minimal number of queries. Such problems
are known as active search [Gar+12; WGS13], or adaptive valuable items discovery [Van+15].
One can also interpret these problems as active learning at run time, as it requires to
adaptively learn the value functions while picking more examples. Also, it naturally
relates to Multi-armed Bandit, a class of sequential decision problems characterizing
the exploration-exploitation dilemma [CL06]. We will look into this setting in §5, and
demonstrate an active search strategy for the object detection application.
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Beyond active i.i.d. learning. Most statistical active learning algorithms are devel-
oped for i.i.d. supervised learning, where both training and testing data are drawn
independently from the same data distribution. For many structured prediction prob-
lems, however, the i.i.d. assumption does not hold, as the (structured) output can
depend on previous predictions. While it is possible to reduce a structure prediction
problem to i.i.d. setting (e.g., by creating a joint feature map of the input and output
[Joa+09]), it is often more desirable to view structured prediction as multiple dependent
classification tasks, in which each label of the structured output as predicted by a
classifier. Techniques for solving such problems are described as imitation learning, or
Learning from demonstration (LfD) [CT14].

In comparison with classical active i.i.d. learning setting, the class of queries involved
in the active LfD problems is much richer: Roughly speaking, there are three types
of queries [CT12] of mixed-granularity in a LfD interaction: label queries (as in active
instance labeling, e.g., “what is the label of this data point?”), demonstration queries (as
in active class selection [Lom+07], e.g., “can you show me an example of class A?”; or
in robotics, “how should I do this given such condition?”), and feature queries (as in
active feature evaluation [DSM09], e.g., “is this feature important for the target concept
being learned?”). There has been some preliminary work evaluating active learning
heuristics for LfD problems [CT14]. However, despite its practical significance, little
has been known about the theoretical performance for such interactive systems.

2.5.2 Statistical Complexity and Computational Complexity

Statistical Complexity: When does active learning help? In statistical learning the-
ory, the theoretical aim for active learning is to build a thorough understanding of its
statistical complexity under the probably approximately correct (PAC) learning framework,
i.e., the number n of examples needed to output a hypothesis that will have expected
error at most ε with probability at least 1− δ, for some fixed ε, δ > 0. Such complexity
measure is known as the label complexity, analogous to the term sample complexity in the
passive model. Due to sampling bias, active learning may require more samples than
passive learning to achieve the same generalization error. Therefore, when applying
active learning algorithms, we want to make sure that active learning, if not helpful,
does not perform worse than passive learning algorithms.

The label complexity of active learning depends on the input distribution and the class
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of hypotheses. Intuitively, active learning can be useful if there are always some data
points that are considerably more “informative” than others (e.g., when complexity of
target function is localized [CWN05]). One can come up with examples where active
learning does not help at all, even under the noise-free setting (e.g., see Dasgupta
[Das05a]). If labels are noisy with noise rate η, then there is a lower bound of Ω

(
η2

ε2

)

on the label complexity of any active learner, i.e., we cannot hope to achieve speedups
with when the noise rate is high [Kää06].

Disagreement-based and margin-based active learning. Many active algorithms
have been proposed in the past decade, with good statistical properties under various
modeling assumptions (see Balcan and Urner [BU15] for a recent survey). In particular,
under the stream-based setting, it has been shown that active learning can effectively
reduce label complexity, even in the agnostic setting [DMH07; BBL06; Han+11]. This
class of algorithms is referred to as disagreement-based active learning (DBAL), as the
learner queries every example that it is somewhat unsure about (e.g. when there
are conflicting hypotheses that disagree with the label of the current example). Such
querying strategies also work under the pool-based setting, but are rather conservative
compared with most pool-based active leaning approaches which seek out data points
that are maximally informative. As a result, disagreement-based active learning often
exhibits weaker performance regarding sample complexity.

Under the pool-based setting, often more aggressive approaches are desired. It is worth
mentioning that the pool-based algorithms are guaranteed to perform no worse than
passive learning in terms of sample complexity. The idea is to first draw a pool of
n unlabeled examples i.i.d. as the initial set. Instead of obtaining all labels, labels are
adaptively requested until the labels of all unlabeled data points in the pool are implied
by the obtained labels (note that one may have to request all n labels in the worst
case). Once the learning process is done, we have obtained n labeled points (drawn
i.i.d.), and hence classical PAC bounds still apply. An important line of work under the
pool-based setting is margin-based active learning (MBAL) [BL13a], where learner queries
only the data points that are within some margin of the decision boundary. While
MBAL achieves a better label complexity than the disagreement-based approaches,
these algorithms are often restricted to limited hypothesis classes (e.g., linear separators
as in [BL13a; GSSS13]) and restricted noise settings (e.g., [Tsy04; HY14]). A recent work
of Zhang and Chaudhuri [ZC14] generalizes MBAL to more general hypothesis spaces.
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However their results are not computationally efficient.

Computational complexity. In statistical active learning, algorithms are studied
mainly concerning their statistical complexity, disregarding their computational complex-
ity [BBL06; ZC14]. An alternative line of work, on the other hand, considers the more
aggressive, yet practically-attractive active learning approaches, and focuses on the op-
timality of the algorithm. While the optimal solution is intractable in general [Cha+07],
it is of great interest to devise efficient algorithms that are competitive with the optimal
algorithm. One famous example of such algorithms is generalized binary search (GBS), or
the splitting algorithm, which achieves an O (log |H|) approximation [Fre+97; KPB99a;
Das05b; Now08] for the expected number of queries in the realizable setting. Here,
|H| denotes the size of the hypothesis class. Such results can also be extended to the
noisy setting, where labels of data points are corrupted with independent noise [KK07;
Now09]. However, these theoretical analyses rely on the assumption that the labels
of data points are conditionally independent given any hypothesis, and are not readily
extendable to handle more complex dependencies in real-world applications (e.g., in
medical diagnosis, conditioned on a diagnosis, the outcomes of medical tests may not
be independent). In §3 and §4 of Part II, we will look into different variants of the
aggressive active learning problems, and provide near-optimal theoretical guarantees
under more relaxed modeling assumptions.

2.6 Related Work in Other Areas

As introduced at the beginning of §1, optimal information acquisition plays a key role
in artificial intelligence and sees wide applications in many domains. To get some
flavor of the related areas, recall the (partial) lists provided in Fig. 1.1. In this section,
we highlight a few areas that are particularly relevant to the theoretical part of this
dissertation.

Information theory. Information theory provides powerful tools for quantifying un-
certainty in challenging computational problems in data analysis. Naturally, many
information-theoretic criteria have been used as design criteria in a variety of fields and
applications. The MIS criterion [Lin56] we investigate in this dissertation is perhaps the
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most widely used approach in Bayesian active learning and sequential experimental
design. The performance bound we obtain in §3 depends on a channel separability
condition, which is natural information-theoretic measure that quantifies the severity
of noise.

Besides Shannon entropy and mutual information, other information-theoretic criteria
have also been studied for adaptive information acquisition, in active learning, sequen-
tial hypothesis testing, and other statistical domains. For example, Naghshvar, Javidi,
and Chaudhuri [NJC12] study the active sequential hypothesis testing problem, in
which they query the label of a sample which maximizes the Extrinsic Jensen-Shannon
divergence at each step (motivated by a connection between Bayesian active learn-
ing and active hypothesis testing). Meanwhile, the adaptive information acquisition
problem also arise in information theory, for example, the generalized binary search
algorithm, and its noisy variants, can be viewed as a generalization of Shannon-Fano
coding [GS88], channel coding with noiseless feedback [Hor63].

Operations research. Submodular functions are a key concept in operations research
and combinatorial optimization. When tests have binary outcomes, the adaptive
(submodular) minimum cost cover problem is relevant to Stochastic Boolean Function
Evaluation (SBFE). In operations research, the SBFE problem is also known as sequential
testing of Boolean functions [Ünl04]. In SBFE, one is given a Boolean function f : Bn →
B, and the task is to evaluate the value of an unknown input u ∈ Bn drawn randomly
from a product distribution, by querying the least number of bits ui. Deshpande,
Hellerstein, and Kletenik [DHK14] propose a greedy approach for such problem, and
prove it to be near-optimal. However, their analysis only applies to the noise-free case,
and it is unclear how these results can be generalized to the noisy setting.

Adaptive sensing and adaptivity gap A natural application domain for information
acquisition is sensor networks, where the goal is to deploy a collection of sensors
to monitor some spatial phenomenon (e.g., for estimation Krause et al. [Kra+06], or
detection [WFIW07]). Krause et al. [Kra+06] show how one can formulate the sensing
problem as a submodular optimization problem and provide a near-optimal solution.
Moving on to the adaptive setting, a key question is how much better an adaptive
policy can perform, when compared to non-adaptive policies that pick the best fixed set
of tests a priori. This is quantified by the adaptivity gap, which is the worst-case ratio,
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between the performance of the optimal adaptive policy and the optimal non-adaptive
solution. Asadpour and Nazerzadeh [AN15] show that for the adaptive stochastic
(submodular) maximization problem (Problem 2.1.2), the expected value of the optimal
non-adaptive policy is at most a constant factor 1− 1/e worse than the expected value
of the optimal adaptive policy. Their analysis relies on the assumption that (1) the
objective function is submodular, (2) tests have unit cost and (3) test outcomes are
independent. In §6 we investigate the adaptivity gap under a more general setting
where the independence assumption does not hold, and show how one can utilize such
result to exploit information parallelism in adaptive optimization.
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Optimal Value of Information
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3
Sequential Information Maximization

In this chapter, we consider a basic variant of the adaptive information acquisition
problem, where the goal is to learn the value of some target random variable through a
sequence of conditional independent, possibly noisy tests. Here, the value of information is
defined in terms of the informativeness of the tests performed, measured by Shannon’s
mutual information. We focus on the adaptive maximization variant of the problem
(Problem 2.1.2), and hence the name sequential information maximization. In particular,
we investigate the widely-used adaptive greedy policy, which at each step picks the
test that provides the maximal reduction in the Shannon entropy of the target variable.
This is the method of choice in numerous applications, such as Bayesian experimental
design, automated diagnosis, and active learning, etc. Despite the importance and
widespread use, little is known about its theoretical properties, particularly under noisy
observations. We provide the first rigorous analysis of such policy that holds under the
persistent noise setting (i.e., if repeating a test is impossible or provides no gain).

Organization of this chapter. We start by introducing the basic model in §3.1, and
formally state the sequential information maximization problem. In §3.2, we introduce
the channel separability condition, a natural information-theoretic measure that character-
izes the level of noise in the system. Based on such measure, we derive a lower bound
on the utility achieved by the greedy policy in §3.3.1, and further give a proof sketch of

45



Chapter 3. Sequential Information Maximization

the key result in §3.3.2. In §3.4, we provide an example to show that this measure is
important in the bound. We conclude this chapter in §3.5.

3.1 Problem Statement

The basic model. Suppose we are given a hidden target random variable Y that ranges
among a set Y = {y1, · · · , yn} with some known distribution Y ∼ P [Y = y]. The goal
is to learn the value of Y by “probing” it with a subset of tests A ⊆ V = {v1, . . . , vt}.
Recall that in §2.1.1, we assume that each test v ∈ V is associated with some observable
random variable Xv ∈ X . In our problem, we can think of the value of Y as representing
a true “hypothesis” among a set of possible n hypotheses, and each of the Xv’s a
“feature” of the target hypothesis which is statistically dependent on Y. In the medical
diagnosis example (see Fig. 3.1), Y represents the physical condition of a patient (e.g.,
possible disease), and X1, . . . , Xt represent the patient’s symptoms or the outcomes of
medical tests. Assume that each test has unit cost. Our goal is to adaptively choose a
sequence of k′ tests that are maximally informative about Y.

highnormal

bone injurypneumonia

e1

e2 e4

e7 e5 e2 e3

(a) A sequential policy for medical diagnosis

P[y1] P[y2] P[y3] P[y4]

Y ⇠ P[Y = y]

(b) Prior on the target hypothesis

Figure 3.1: Sequential information maximization for medical diagnosis.

We adopt the common assumption in Bayesian experimental design that the joint
probability distribution P(Y, X1, . . . , Xt) is known and that we can perform efficient
inference (i.e., can compute marginal and conditional distributions). In particular, we
consider the Naı̈ve Bayes model, i.e., we assume that Xi’s are conditionally independent
given Y (see Fig. 3.2a). Equivalently, we assume that the each test Xi depends on the
hidden variable Y and another latent variable Nv, in the following way: First, Y goes
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. . .

Y

X1 X2 Xt

(a) The Naı̈ve Bayes model.

. . .

. . .

. . .

D1 D2 Dt

N1 N2 Nt

Y

X1 X2 Xt

(b) An equivalent representation

Figure 3.2: A Bayes net representation of the probabilistic model.

through a deterministic mapping Dv := Dv(Y), i.e, each Dv is a function of Y. The
output of Dv will then be perturbed by Nv, and produce the test outcome Xv (see
Fig. 3.2b). Hence Xv is a deterministic function of the noise Nv and Dv. Here, one can
interpret Dv as the true outcome of test Xv, while the random variable Nv encodes
the associated noise. Importantly, note that in this construction we assume Nv’s to be
mutually independent.

Example 3.1 (Generalized Binary Search). An example for our setting is the generalized
binary search (GBS) problem, where Y represents a randomly chosen hypothesis and each Xv is
a binary random variable, representing the binary label of example v under hypothesis Y. In the
noise-free setting, Xv = Dv is a deterministic function of Y. In the noisy setting, Xv results
from flipping the (deterministic) outcome of Dv with probability ε and the flipping events of
the tests are independent. In other words, we can write Xv = Dv ⊕ Nv, where Dv is the true
label and a deterministic function of Y, Nv is a binary random variable with Pr(Nv = 1) = ε,
and ⊕ denotes the addition in F2 = {0, 1} (i.e., the XOR operation).

To show that the graphical model as illustrated in Fig. 3.2b is indeed an equivalent
representation of the Naı̈ve Bayes model in Fig. 3.2a, we can consider the following
transformation. For any joint distribution P [X1, . . . , Xt, Y], we can write down its
joint distribution table, and introduce N as a uniformly-distributed random variable
independent of Y, which indexes the rows of P [X1, . . . , Xt | Y] according to their
conditional probability. In this way, P [X1, . . . , Xt | Y] is deterministic given Y and N.
Also, N can be properly quantized to be a discrete random variable. This procedure is
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similar to the so-called random representation theorem in Markov Chains [LPW, Ch.
1].

Problem statement We consider policies of fixed length, and denote a policy π of
length k as π[k]. Suppose that the realization of all tests in V is xV . Then, upon
completion, policy π[k] returns a sequence of k test-outcome pairs S(π[k], xV ) =

{(vπ,1, xvπ,1), (vπ,2, xvπ,2), · · · , (vπ,k, xvπ,k)}. Note that what π[k] returns is random, de-
pendent on the (random) outcomes of the selected tests (as well as the decisions that
π[k] has made). Once S(π[k], xV ) is observed, we obtain a new posterior of Y, and

hence the associated entropy H
(

Y | S(π[k], xV )
)

. As mentioned in §2.2.1, we define
the entropy of Y given the policy π[k] as

H
(

Y | π[k]

)
, ExV

[
H
(

Y | S(π[k], xV )
)]

and the mutual information between π and Y is

I
(

π[k]; Y
)
= H (Y)−H

(
Y | π[k]

)

which indicates the expected amount of information that π[k] provides about Y upon
completion. We then define the optimal policy πOPT[k] to be the policy that achieves
the maximal expected mutual information, i.e.,

πOPT[k] = arg max
π∈Π[k]

I
(

π[k]; Y
)

(3.1.1)

where Π[k] is the set of all policies of length k. Note that computing the optimal policy
is intractable in general. A very well known, efficient and intuitive policy is the one that
greedily picks the test that reduces the current entropy of Y the most, or equivalently,
has the maximum mutual information w.r.t. the current distribution of Y. We denote
such most informative selection policy of length k by πMIS[k]. Then, at round `, πMIS[k]

picks a test
v∗ ∈ arg max

v∈V
I
(

Xv; Y | S(πMIS[`−1], xV )
)

. (3.1.2)

In the following sections, we will provide a detailed analysis of the MIS policy, and
establish conditions under which MIS achieves near-optimal performance.
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Y XvDv

d x

Wv

P[x | d]

perturbation by Nvdeterministic

(a) Illustration of the noise channel

Wv = BSC
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e
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(b) BSC

Figure 3.3: Illustration of the channel induced by noise. (a) shows the data generation
process. In (b) we illustrate the binary symmetric channel for Example 3.1.

3.2 Channel Induced by Noise

Intuitively, the performance of the policy should depend on the amount of uncertainty
in the system. In this section, we quantify the noise in the system in terms of a natural
channel separability condition.

Recall that for any e ∈ V , the random variable Dv is a deterministic function of Y. The
value of Dv is then perturbed by the noise Nv to generate the test variable Xv. Since the
perturbation of Nv is assumed to take place independently of Y, we can characterize
such perturbation through a conditional probability distribution P [Xv = x | Dv = d]
where x ∈ X , d ∈ D, and D, X are the support of Dv, Xv. We refer to this conditional
probability distribution as the channel induced by the noise and denote it by Wv (see
Figure 3.3).

The test Xv depends on Y only through Dv, i.e., we have the Markov chain Y → Dv →
Xv. As a result,

I (Xv; Y) = I (Xv; Dv) ,

and the latter is by definition less than the capacity of the channel Wv. We now
introduce another parameter for the channel Wv and will later establish its importance
for sequential selection.

Definition 3.2 (Separability of a channel). Consider a channel W with associated
conditional probability distribution {P [x | d]}d∈D,x∈X . Note that given each d ∈ D,
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P [· | d] is a probability distribution over X . The separability of W, denoted by S(W),
is then defined by

S(W) =

(
min

d,d′∈D:d 6=d′

∣∣P [· | d]−P
[
· | d′

]∣∣
TV

)2

. (3.2.1)

Here, |·|TV denotes the total variation distance. Also, if |D| = 1 we let S(W) = 1.
Intuitively, for a channel W and two inputs d, d′, the value |P [· | d]−P [· | d′]|TV is
an indicator of how much the channel can differentiate between d and d′. E.g., if
|P [· | d]−P [· | d′]|TV = 0 then P [· | d] = P [· | d′], in which case it is impossible
to distinguish d from d′ given the output of the channel. On the other hand, if
|P [· | d]−P [· | d′]|TV = 1 then from the output we can for sure exclude either d or d′

(i.e., if we know that the input was either d or d′, then we can say from the output
which one is the input).

As mentioned above, for any v ∈ V we have an associated channel Wv which is induced
by the noise Nv. We denote by Smin the minimum value of separability over all the
channels Wv, i.e.,

Smin = min
v∈V

S(Wv).

For the noisy GBS example (Example 3.1), it is easy to see that the separability of the
binary symmetric channel (see Fig. 3.3b) is Smin = (1− 2ε)2.

3.3 A Lower Bound on the Utility

Now we are ready to state our main result, which provides the first approximation
guarantee on the performance of the MIS policy under the persistent noise setting.

3.3.1 Main Result

Theorem 3.3. Consider the sequential information maximization problem, where we run the
most informative selection policy πMIS till length k′. For any δ > 0 and k ∈N, we have1

I
(

πMIS[k′]; Y
)
≥
(

I
(

πOPT[k]; Y
)
− δ
) (

1− exp(− k′

kγ max{log n, log 1
δ}

)
)

, (3.3.1)

1Throughout this dissertation, all the log’s are in base 2.
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where n = |Y| is the number of possible values of Y, and γ is a constant that only depends on
the noise N, concretely: γ = 7

Smin
.

To avoid a lengthy interruption of the exposition, we defer the proof of Theorem 3.3
to §3.3.2. Here, we list a few noteworthy observations. First, suppose that for some
fixed 0 < α < 1 we have that δ = αI

(
πOPT[k]; Y

)
. Thus, δ is expressed as a fraction

of the maximum mutual information obtainable by any policy. Then the RHS of
Inequality (3.3.1) turns into a multiplicative bound in terms of α:

I
(

πMIS[k′]; Y
)
≥ I

(
πOPT[k]; Y

) (
1− α

)(
1− exp

(
− k′

kγ max{log n, log 1
αI(πOPT[k];Y))}

)
.

We note that for many reasonable scenarios, I
(

πOPT[k]; Y
)

is typically at least a few
bits. Otherwise arguably the information gathering task is ill-posed / infeasible. In
this case, if we assume I

(
πOPT[k]; Y

)
≥ 1, then we obtain a lower bound where the

multiplicative factor only depends on the noise channel:

I
(

πMIS[k′]; Y
)
≥ I

(
πOPT[k]; Y

) (
1− α

)(
1− exp

(
− k′

kγ max{log n, log 1
α}

)
)
.

Another way to interpret the result is to use the fact that I(πOPT[k]; Y) ≤ log n. From
(3.3.1) we obtain

I
(

πMIS[k′]; Y
)
≥ I

(
πOPT[k]; Y

)
− δ− log n

(
1− exp(− k′

kγ max{log n, log 1
δ}

)
)
,

As a consequence, if we choose k′ ≥ kγ max{log n, log 1
δ} ln( log n

δ ), then we have

I
(

πMIS[k′]; Y
)
≥ I

(
πOPT[k]; Y

)
− 2δ.

Hence, we can get arbitrarily close – up to δ in absolute terms – to the optimal
mutual information achievable within k tests by greedily selecting k′ tests, which is a
logarithmic factor (in terms of log n and log 1

δ ) of k.

Remark 3.4. A few comments are in order. First, as an example, for the GBS problem
in Example 3.1, γ = 7

(1−2ε)2 , and the lower bound we get for the greedy algorithm is

I
(

πMIS[k′]; Y
)
≥
(

I
(

πOPT[k]; Y
)
− δ
) (

1− exp( k′(1−2ε)2

7k max{log n,log 1
δ }
)
)

.

Second, let us assume that in expectation, the policy πopt manages to reduce the
uncertainty of Y to δ. Denote the cost of such a policy as Copt(δ). In other words,
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we have I
(

πopt[Copt(δ)]; Y
)
≥ H (Y)− δ. Further, let δ′ = 2δ. We ask how many tests

the greedy policy πMIS needs, call it CMIS(δ
′), so that I

(
πMIS[CMIS(δ′)]; Y

)
≥H (Y)− δ′.

From Theorem 3.3, it is not difficult to compute that πMIS needs at most

CMIS(δ
′) ≤ Copt(δ) · γ ·max{log n, log

1
δ
} · ln(H (Y)

δ
)

≤ Copt(δ) · γ ·max{log n, log
1
δ
} · ln( log(n)

δ
).

Therefore, for the greedy policy to gain information “close to” πOPT[k], we need to run

πMIS[k′] for k′ = O
(

k · log n
Smin

)
rounds. For the GBS problem, we have k′ = O

(
k · log n

(1−2ε)2

)
.

Thus, when Smin is large (e.g., ε is small), then the greedy policy exhibits near-optimal
performance.

Third, the Smin involved in our bound is defined over all the possible tests picked by
πMIS or πOPT. Therefore, if there are some tests which are “purely noisy”, i.e., the
separability of their associated noise channels have S(W) = 0, then clearly both πMIS

and πOPT will disregard those tests, and hence their S(W)’s don’t affect our lower
bound.

3.3.2 The Analysis Framework

In this section, we prove Theorem 3.3. A key lemma in proving the theorem is as
follows.

Lemma 3.5. Consider the probabilistic model of Fig. 3.2 with an arbitrary probability distri-
bution P [·]. Also, consider any adaptive policy π which chooses k tests among {Xv}v∈V and
gains mutual information I (π; Y). Then, we must have

max
v∈V

I (Xv; Y) ≥ I (π; Y)

kγ max
{

log n, log 1
I(π;Y)

} . (3.3.2)

We relegate the proof of this lemma to the next section. Let us now see how the result
of Theorem 3.3 follows from this lemma.

Proof of Theorem 3.3. Now, we show that Eq. (3.3.1) holds for any policy π[k] of length k.
For simplicity, let

Ψ` , S(πMIS[`], XV )
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be a random variable representing the first ` tests (and their associated outcomes) that
have been selected by the greedy policy πMIS, and ψ` , S(πMIS[`], xV ) be a specific
realization of Ψ`. In the decision tree representation of πMIS[`], ψ` represents a path
from the root to a node at level ` (see Fig. 3.4). Now suppose we have run the greedy
policy πMIS till level `, and have observed the realized path ψ` (thus ψ` is a sequence
of ` chosen tests and their observed outcomes). At this point, πMIS picks a new test
according to the greedy rule (Eq. (3.1.2)). Therefore, the expected gain of the greedy
algorithm at time `+ 1 is maxv∈V I (Xv; Y | ψ`).

. . .

. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

y` := S(p[`], xV )

p[k]

Figure 3.4: The decision tree representation of policies (i) πMIS[`] of length `, and (ii)
π[k] of length k. After πMIS has selected ` tests (observed ψ`), we run policy π[k], as
if from a fresh start. This is known as the concatenation of the two policies πMIS[`] and
π[k], see [GK11a].

Let us now consider the following thought experiment. Assume the same setting
as above (i.e., we have observed ψ`) and we run the policy π[k] of length k as if
from a fresh start (Fig. 3.4), i.e., π[k] is run by totally neglecting the observation ψ`.
The policy π[k] then outputs a realization ψπ. The expected information we obtain
by using the aforementioned version of π (that totally neglects the observation ψ`)
is H (Y | ψ`)−H

(
Y | ψ`, π[k]

)
or equivalently I

(
π[k]; Y | ψ`

)
. We can now use the

result of Lemma 3.5 to relate the gain of the greedy to the gain of π[k]. An important
point to note here is that the result of Lemma 3.5 holds for any probability distribution
on the Bayesian network of Fig. 3.2. In particular, by conditioning all our distributions
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on the observation ψ`, and by using Lemma 3.5, we obtain

max
v∈V

I (Xv; Y | ψ`) ≥ Eψ`

[ I
(

π[k]; Y | ψ`

)

kγ max{log n, log 1
I(π[k];Y|ψ`)

}

]
. (3.3.3)

Now, by further averaging over ψ`, the expected entropy reduction by running π[k]

after πMIS[`] is

Eψ`

[
I
(

π[k]; Y | ψ`

)]
= Eψ`

[
H (Y | ψ`)−H

(
Y | π[k], ψ`

)]

= H
(

Y | πMIS[`]

)
−H

(
Y | π[k], πMIS[`]

)

≥H
(

Y | πMIS[`]

)
−H

(
Y | π[k]

)

= I
(

π[k]; Y
)
− I

(
πMIS[`]; Y

)
. (3.3.4)

Note here that I
(

π[k]; Y
)

is the total information gain of the policy π[k] about Y. Fix

δ > 0, and denote α := kγ max{log n, log 1
δ}. We can resume Eq. (3.3.3) as follows

Eψ`

[
max
v∈V

I (Xv; Y | ψ`)

]
(inequality (3.3.3))

≥ Eψ`

[ I
(

π[k]; Y | ψ`

)

kγ max{log n, log 1
I(π[k];Y|ψ`)

}

]

≥ Eψ`

[I
(

π[k]; Y | ψ
)
· 1
{

I
(

π[k]; Y | ψ`

)
> δ

}

kγ max{log n, log 1
I(π[k];Y|ψ`)

}

]

≥ 1
α

(
Eψ`

[
I
(

π[k]; Y | ψ`

)
· 1
{

I
(

π[k]; Y | ψ`

)
> δ

}
+ δ
]
− δ
)

≥ 1
α

(
Eψ`

[
I
(

π[k]; Y | ψ`

)]
− δ
)

(inequality (3.3.4))
≥ 1

α

(
I
(

π[k]; Y
)
− I

(
πMIS[`]; Y

)
− δ
)

.

Rearranging the terms, we have

I
(

π[k]; Y
)
− δ− I

(
πMIS[`]; Y

)
≤ αEψ`

[
max
v∈V

I (Xv; Y | ψ`)

]

= α

(
H
(

Y | πMIS[`]

)
−Eψ`

[
min
v∈V

H (Y | Xv, ψ`)

])

= α
(

I
(

πMIS[`+1]; Y
)
− I

(
πMIS[`]; Y

))
. (3.3.5)

Let ∆` := I
(

π[k]; Y
)
− δ − I

(
πMIS[`]; Y

)
, so that Inequality (3.3.5) implies ∆` ≤
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�`

Number of tests

` 7! I
⇣

pMIS[`]; Y
⌘

I
⇣

p[k]; Y
⌘
� d

I (·; Y)

Figure 3.5: Bounding ∆0 against ∆`.

α · (∆` − ∆`+1). From here we get ∆`+1 ≤
(

1− 1
α

)
∆`, and hence ∆k′ ≤

(
1− 1

α

)k′
∆0 ≤

exp
(
− k′

α

)
∆0. See Fig. 3.5 for illustration.

Substituting ∆′k, ∆0 with their definitions, we get

I
(

π[k]; Y
)
− δ− I

(
πMIS[k′]; Y

)
< exp

(
−k′

α

)
∆0 ≤ exp

(
−k′

α

)(
I
(

π[k]; Y
)
− δ
)

.

This gives us I
(

πMIS[k′]; Y
)
≥
(

I
(

π[k]; Y
)
− δ
)(

1− exp
(
− k′

kγ max{log n,log 1
δ }

))
.

3.3.3 Proof Sketch of the Key Lemma

We first show a sufficient condition for Lemma 3.5 as follows.

Lemma 3.6. Fix any α ∈ [0, log n]. If we assume maxv∈V I (Xv; Y) is sufficiently small, i.e.,

max
v∈V

I (Xv; Y) ≤ α

kγ max{log n, log 1
α}

, I0(α). (3.3.6)

then no policy of length k can achieve a mutual information α, i.e., ∀π[k], I
(

π[k]; Y
)
< α.

The sufficiency is immediate: suppose Lemma 3.6 holds. Now, if there exists a policy π

of length k with mutual information I (π; Y), then by letting α = I
(

π[k]; Y
)

, it must

hold that maxv∈V I (Xv; Y) >
I(π[k];Y)

kγ max{log n,log 1
I(π[k] ;Y)

} , which gives us Lemma 3.5.
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So for the rest of the proof, we focus on proving Lemma 3.6. We assume that (3.3.6)
holds. We consider a policy2 π of length k and show that I (π, Y) < α. We divide the
proof into three steps.

Step 1: Recall that each r.v. Dv, as a deterministic function of Y, takes values over
its support Dv with distribution P [Dv = dv] (and these distributions are possibly
different for each e ∈ V). Denote pv,max = maxdv∈Dv P [Dv = dv] to be the probability
of the most likely outcome for Dv. Let us first see how the value I (Xv; Y) can be
expressed in terms of pv,max and S(Wv). We first argue that for any e ∈ V we have
that I (Xv; Y) = I (Xv; Dv). This is because Dv is a function of Y, and Xv is a function
of noise N (which is independent of Y) and Dv (i.e., Y → Dv → Xv forms a Markov
chain).

Lemma 3.7. Fix θ ∈ (0, 1/4]. If I (Xv; Dv) ≤ θS(Wv), then we have pv,max ≥ (1 +√
1− 4θ)/2.

We relegate the proof of this lemma to §A.1.1. By combining Lemma 3.7 with Inequality
(3.3.6) and the fact that I (Xv; Y) = I (Xv; Dv), we obtain that for any v ∈ V (note the
fact that I0/Smin ≤ 1

4 ),

pv,max ≥
1
2

(
1 +
√

1− 4θ
)
≥ 1

2

(
1 +

√
1− 4

I0

Smin

)
, β (3.3.7)

Step 2: This is the situation at level 0. To investigate how the values pv,max change as
we perform more tests and observe their outcomes, we have to take into account how
the noise affects the prior and so on. However, we intend to avoid such an analysis.
For this purpose, we first prove that the performance of the system would only become
better if we were given full information about the noise N. Formally speaking, as
mentioned above, a policy π which has length k can also be thought of as a random
object which outputs a set of k test-outcome pairs ψπ , {(vπ,1, xvπ,1), . . . , (vπ,k, xvπ,k)}.
Such a policy starts from a root node (with only the knowledge about the probabilistic
model of Y and Xv’s) and performs its tests sequentially and adaptively according to
what it has observed. Now, consider another random variable G defined as follows:

G = {(vπ,1, dvπ,1), (vπ,2, dvπ,2), . . . , (vπ,k, dvπ,k)}. (3.3.8)

One can think of G as an oracle sitting beside the system π and observing its actions
2To simplify notation, in what follows in this chapter we use π instead of π[k].
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. . .

. . .

. . .

D1 D2 Dt

N1 N2 Nt

Y

X1 X2 Xt

The oracle G observes what p observes (i.e., Xe’s),
as well as the true outcome (i.e., De’s).

p observes noise-corrupted test outcomes (i.e., Xe’s),

Figure 3.6: Illustration of Step 2: An oracle G sitting beside the system π.

(see Fig. 3.6). Furthermore, at each time whatever test e that π picks, G has access to the
outcome of Dv, i.e., dv. Note that G does not know the true value of Y. But we expect
that G has a better idea about Y than π has. This is because G knows the deterministic
outcomes of the tests that π has picked while π only knows a noisy version of these
deterministic outcomes (i.e., what π observes is a noisy version of what G observes).
Let N be a random vector concatenating all Nv. Indeed, we can write

I (G; Y) = H (Y)−H (Y | G)

(a)
= H (Y)−H (Y | G, N)

(b)
≥ H (Y)−H (Y | π) = I (π; Y) , (3.3.9)

where (a) follows from the fact that Y is independent of N, and (b) is because the
output of π is a deterministic function of the the noise N and the output of G. The idea
now is to analyze G. Note that: (i) Since G has access to the deterministic values dv

of the tests that π picks, its posterior about Y is decoupled from the noise N. (ii) Any
upper bound on I (G; Y) would also be an upper bound on I (π; Y) by (3.3.9).

Step 3: Let us now find an upper bound on I (G; Y). For this, we start from the root
node of π. Recall that in Step 1 we proved that any of the tests Xv satisfies the relation
(3.3.7). In other words, at time 0 (before performing any tests by π), if we define for
e ∈ V

bv = arg max
b∈D

{P [Dv = b]}, and Yv = {y ∈ Y : Dv(y) = bv}, (3.3.10)

then by (3.3.7) we have that

P
[
y ∈ Y{

v

]
= P [Dv(Y) 6= bv] = 1− pv,max ≤ 1− β, (3.3.11)
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where by Y{
v we mean the complement of the set Yv. The policy π has length k, i.e., it

sequentially and adaptively performs tests which we denote by vπ,1, · · · , vπ,k and the
choice of vπ,i is based on the full observation of the outcomes of vπ,1, · · · , vπ,i−1. We
now consider the following event

Λ = {(Dvπ,1 = bvπ,1) ∧ (Dvπ,2 = bvπ,2) ∧ · · · ∧ (Dvπ,k = bvπ,k)}, (3.3.12)

I.e., A is the event that whatever test e that π picks, its deterministic part Dv outputs
its most likely outcome bv. See Fig. 3.7 for illustration.

Dv1 = 0

Dv2 = 1

Dv3 = 1

Figure 3.7: Illustration of Step 3: Solid dots represent hypotheses, and the lines represent
(binary) tests. Large marginal probabilities (P [Dv1 = 0], P [Dv2 = 1] and P [Dv3 = 1])
imply a large joint probability P [Dv1 = 0, Dv2 = 1, Dv3 = 1] (c.f., Eq. (3.3.14)).

We establish a lower bound on the probability of Λ through the following lemma:

Lemma 3.8. If for every test v ∈ V we have pv,max ≥ β, then P [Λ] ≥ 1− k(1− β).

We relegate the proof of this lemma to §A.1.2. In other words, the random variable G
has observations compatible with the event Λ with probability at least as the lower
bound provided in Lemma 3.8. We can now write

H (Y | G)
(a)
= P [Λ]H (Y | G, Λ) + (1−P [Λ])H

(
Y | G, Λ{

)

(b)
≥ P [Λ]H (Y | G, Λ) . (3.3.13)

Here, (a) follows from the fact that the event Λ is a function of what G observes. Also,
(b) follows from entropy function being positive. It remains to find a lower bound

58



3.3. A Lower Bound on the Utility

on H (Y | G, Λ). For this, note that if we end up being in the event Λ, then all the
hypotheses in the set ∩k

j=1Yvπ,j would remain compatible with the observations that
G has had. Let us assume that G has observed {vπ,1, . . . , vπ,k} and the corresponding
outcomes {Dvπ,1 = bvπ,1 , . . . , Dvπ,k = bvπ,k} (so that event Λ has taken place). To simplify
notation, let us define U , ∩k

j=1Yvπ,j . By the union bound and Eq. (3.3.7) we have

P [U] = 1−P
[
U{
]
≥ 1−

k

∑
j=1

(1−P
[
Yvπ,j

]
) ≥ 1− k(1− β). (3.3.14)

Now, the posterior that G has about Y, P [Y | y ∈ U], would become as follows:

If y ∈ U, then P [y | y ∈ U] =
P [y]
P [U]

, and If y /∈ U, then P [y | y ∈ U] = 0.

The entropy of the posterior then becomes

H (Y | y ∈ U) = ∑
y∈U

P [y]
P [U]

log
P [U]

P [y]

=
1

P [U] ∑
y∈X

P [y] log
1

P [y]
+ log P [U]

(a)
≥ H (Y)

P [U]− 1−P[U]
P[U]

log n
1−P[U]

+ log P [U]

(b)
≥ H (Y)− 1− ρ

ρ
log

n
1− ρ

+ log(ρ). (3.3.15)

Here, step (a) follows Lemma A.2 as stated in §A.1.2. In step (b) we have assumed that
ρ , 1− k(1− β). We thus have from (3.3.14) that P [U] ≥ ρ, and step (b) follows from
simple calculus. We also note from Lemma 3.8 that P [Λ] ≥ ρ. Hence, given event Λ,
the entropy of the posterior that G has about Y is always lower bounded by (3.3.15).
We thus obtain from (3.3.13) that

H (Y | G) ≥ P [Λ]H (Y | G, Λ) ≥ ρH (Y)− (1− ρ) log
n

1− ρ
+ ρ log ρ.

Finally, we obtain

I (G; Y) = H (Y)−H (Y | G)

≤H (Y)− ρH (Y) + (1− ρ) log
n

1− ρ
+ ρ log

1
ρ

= (1− ρ)(H (Y) + log n) + (1− ρ) log
1

1− ρ
+ ρ log

1
ρ

. (3.3.16)
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From now on, we assume that k ≥ 2 (this is because the result of Lemma 3.6 is clear
when k = 1). By the definition of I0 in (3.3.16), we have I0

Smin
= α

7k max{log n,log 1
α}
≤ 1

14

due to the fact that α ≤ log n. By the definition of β in Eq. (3.3.7), we know that when
I0

Smin
≤ 1

14 , it holds that

1− ρ = k(1− β) = k

(
1
2
− 1

2

√
1− 4

I0

Smin

)
<

11kI0

10Smin
.

To prove this, one can show that the function f (x) =
(1/2−(1/2)

√
1−4x)

x is monotone
increasing for x ∈ (0, 1/14]. By plugging in x = 1/14 we obtain f (1/14) ≤ 11/10.

Combining the above equation with Eq. (3.3.6) we get 1− ρ < 11
10

α
7 max{log n,log 1

α}
<

11α
70 log n . Now, from (3.3.16) we have

I (G; Y) <
11α

70
H (Y) + log n

log n
+ (1− ρ) log

1
1− ρ

+ (1− (1− ρ)) log
1

1− (1− ρ)
(a)
<

11α

35
+ (1− ρ)

(
log

1
1− ρ

+
1

ln 2

)

<
11α

35
+

11α

70
log 70

11 + log (max{log n, log(1/α)}) + log 1
α + 1

ln 2
max{log n, log(1/α)}

(b)
≤ 11α

35
+

11α

70

(
log 70

11 + log log n + 1
ln 2

log n
+ 1

)
(c)
< α.

Here, (a) follows from the fact that H (Y) is less than log n (because |Y| = n), and the
inequality −(1− x) log(1− x) < x/(ln 2) for x ∈ (0, 1). Also, (b) follows from simple
calculus steps which we omit for the sake of space, and (c) simply follows when n ≥ 3.
For n = 2, the proof of Lemma 3.5 can be done in a simpler way as above, and we
relegate it to §A.1.3.

3.4 An Upper Bound on the Utility

In this section, we establish an upper bound on the ratio between the greedy policy
and the optimal policy, which involves Smin.

Theorem 3.9. There exists an example, where I
(

πMIS[k′]; Y
)
≤ I

(
πOPT[k]; Y

)
·O (Smin).

In the following, we will provide an example which meets the upper bound in The-
orem 3.9. We first describe the high-level intuition behind the example in §3.4.1, and
then present details in §3.4.2.

60



3.4. An Upper Bound on the Utility

3.4.1 A Bad Example for the MIS Criterion

In our example, we first design T + 1 sets of tests V1,V2, . . . ,VT+1 (the value of T will
be specified later). By design, tests in these sets have low information gain on their own:
in the beginning, all these tests have 0 outcomes with a high probability. However, if
one test v(i) ∈ Vi from set i is observed to have a positive outcome, then one can always
find a test v(i+1) ∈ Vi+1, which is very informative about the remaining hypotheses
that are consistent with the outcome of v(i). A smart policy will (sequentially) pick
tests among these sets, and one can show that with at most 2T tests (see §3.4.2), this
policy will reduce H (Y) by at least (log n)/T bits.

To “confuse” the greedy policy, we design another set of tests U , with infinitely many
noisy tests, and the deterministic outcome of each test takes value among {0, 1} with
equal probability. As in Example 3.1, we assume that observed outcome of each test
Z ∈ Z is perturbed by a binary symmetric channel with flip-over probability ε. If
Smin = (1− 2ε)2 is sufficiently large (in fact, in our example, Smin ≥ Ω (1/ log n)), one
can show that with high probability, the greedy policy always picks among this set
of tests, and within 2T tests, the gain of the greedy policy is at most O(SminT) Bits.
Setting T = 2

√
log n, the ratio between the gain of greedy and the smarter policy

is at most c0Smin, where c0 is some constant (note that when Smin is small we have
c0Smin ≈ (1− exp (c0Smin))).

3.4.2 Detailed Construction of the Treasure Hunt Example

Consider the following treasure hunt example. Assume that the hidden variable Y takes
value among set Y = {y1, · · · , yn} with uniform distribution. Define T , 2

√
log n, and

let k′ = k = 2T, i.e., the greedy policy πMIS and the optimal policy πOPT have the same
budget. We now design a problem with 2(10+2 log log n)

log n ≤ Smin ≤ 1
256
√

log n(log log n)2 ,

such that πMIS performs considerably worse w.r.t. πOPT (indeed, the ratio is a factor of
Smin). Finally, note that we choose n sufficiently large so that the bounds provided are
meaningful.

The treasure hunt example. We first define T + 1 types of tests, namely Type 1, Type
2, . . . , Type T + 1. The first type of tests, V1, contains a total number of T tests, all of
which have binary outcomes. We denote the corresponding set of random variables by
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XV1 = {X(1)
1 , X(1)

2 , . . . X(1)
T }. We partition the set Y into T equal-size groups, denoted

by Y1,Y2, . . . ,YT, each containing n/T values (assume n is such that this partition is
possible). Each test of Type 1 can be thought to be informative about only a small
fraction of Y1. Specifically, imagine that we further partition the set Y1 into T groups
of equal size, denoted by Y1,1,Y1,2, · · · ,Y1,T. For each i ∈ {1, . . . , T}, we define

X(1)
i =

{
1, if y ∈ Y1,i;
0, o.w.

The mutual information between each test X(1)
i and Y is

I
(

X(1)
i ; Y

)
= H

(
X(1)

i

)
−H

(
X(1)

i | Y
)

=
1

T2 log T2 +

(
1− 1

T2

)
log
(

T2

T2 − 1

)

≤ log T2

T2 +
2

T2

=
4 + log log n

4 log n
. (3.4.1)

The second set of tests, V2, also contains T tests. Their corresponding outcomes are
denoted by XV2 = {X(2)

1 , X(2)
2 , . . . , X(2)

T }. Each test in V2 has three possible outcomes.
When y ∈ Y1,i, X(2)

i takes values among {1, 2} with equal probability 1/2; when
y /∈ Y1,i, X(2)

i = 0. For each i ∈ {1, . . . , T}, we denote Y1,i,1 and Y1,i,2 to be the set of
values of y on which X(2)

i = 1 and X(2)
i = 2, then

X(2)
i =





2, if y ∈ Y1,i,2;
1, if y ∈ Y1,i,1;
0, o.w.

The mutual information between each test X(2)
i and Y is

I
(

X(2)
i ; Y

)
= H

(
X(2)

i

)
−H

(
X(2)

i | Y
)

=
1

2T2 log 2T2 +
1

2T2 log 2T2 +

(
1− 1

T2

)
log
(

T2

T2 − 1

)

≤ log 2T2

T2 +
2

T2

=
5 + log log n

4 log n
. (3.4.2)

62



3.4. An Upper Bound on the Utility

Further, there are a total number of 2T tests of Type 3, with XV3 = {X
(3)
1 , X(3)

2 , . . . X(3)
2T }.

Each of the tests has 5 possible outcomes. Intuitively, we design these tests to further
refine the set of values Y can take based on the outcome of tests in V2: if one of the
tests in V2 has non-zero realization, then there exists a test X(3)

i ∈ XV3 that will help
us identify a much smaller subset of Y . Formally, for i ∈ {1, . . . , T}, j ∈ {1, 2}, and
l ∈ {1, 2, 3, 4}, we denote Y1,i,j,l to be the set of values of y on which X(3)

2i+1−j = l, and
each Y1,i,j,l contains n

4×2T2 values. We define

X(3)
2i+1−j =





4, if y ∈ Y1,i,j,4;
3, if y ∈ Y1,i,j,3;
2, if y ∈ Y1,i,j,2;
1, if y ∈ Y1,i,j,1;
0, o.w.

For i ∈ {1, . . . , 2T}, the mutual information between each test X(3)
i and Y is

I
(

X(3)
i ; Y

)
= 4× 1

4× 2T2 log (4× 2T2) +

(
1− 1

2T2

)
log
(

2T2

2T2 − 1

)

≤ log(4× 2T2)

2T2 +
2

2T2

=
7 + log log n

8 log n
. (3.4.3)

Similarly, we define tests of Type t, t ∈ {2, . . . , T + 1} to be Vt, with |Vt| = ∏t−2
i=1 2i.

Those tests, if sequentially performed, behave as follows: If one of the tests in Vt−1 has
non-zero realization, then one can perform a test in X(t)

i ∈ XVt , and the outcome of this
test can reduce the number of consistent hypotheses to a factor of 1

2t−1 .

Suppose there is a “smart” policy, denoted by πs, which works as follows. It first
performs all the T tests in V1, and the probability that one of them has non-zero
outcome is 1/T. If this happens, then πs sequentially picks T more tests from each of
the sets V2,V3, . . . ,VT+1. Test e ∈ Vi will reduce the number of valid values of Y by a
factor of 1

2i−1 . Hence, by noting n
T2

(
1
2 × 1

4 × · · · × 1
2T+1

)
< 1 we can see that, if y ∈ Y1,

then after 2T tests, we get the right hypothesis (i.e., the policy πs reduces H (Y | π) to
0). Since y ∈ Y1 occurs with probability 1/T, we can bound the gain of πs by

I (πs; Y) ≥ (log n)/T. (3.4.4)
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The greedy policy. We now define another set of tests and show that with high
probability, the greedy policy prefers this set, but performing tests in this set gives a
relatively low gain in terms of entropy reduction. Denote this set of tests by V0. There
are infinitely many identical tests in V0. We denote the set of random variables by
XV0 = {X

(0)
1 , X(0)

2 , X(3)
3 , . . . }.

For any fix Y, the observed outcome of any X(0) ∈ XV0 is flipped from the (deterministic)
outcome D(0) with probability ε (so that Smin = (1− 2ε)2), and the flipping events of the
tests are independent (i.e., each test is associated with a binary symmetric noise channel).
Assume that initially, the deterministic outcome D(0)

i of X(0)
i is uniformly distributed

among {0, 1}. In particular, let Y1 , Y1 ∪ · · · ∪ YT/2, and Y0 , YT/2+1 ∪ · · · ∪ YT, we
define for each i,

D(0)
i =

{
1, if y ∈ Y1;
0, if y ∈ Y0;

and the observed outcome X(0)
i = D(0)

i ⊕ Ni, with Pr(Ni = 1) = ε.

Then, it is easy to check that in the very beginning (where Y has a uniform distribution)
we have I

(
X(0)

i ; Y
)
= 1− h2(ε). We prove that the greedy policy πMIS picks these tests

with high probability. The following lemma characterizes such behavior of πMIS.

Lemma 3.10. Assume that 2(10+2 log log n)
log n ≤ Smin ≤ 1

256
√

log n(log log n)2 . With probability at

least 1− 4
√

log n exp
(
−2(log log n)2), πMIS[2T] will pick 2T tests in V0.

The proof of this lemma appears in §A.1.4. Now, note that H (Y) can at most be log n
under any distribution. So the gain of πMIS can be bounded from above as follows.

I (πMIS; Y) ≤ I
(

X(0)
1 , . . . , X(0)

2T ; Y
)
+
(

4
√

log n exp
(
−2(log log n)2

))
log n.

Let us now bound the mutual information term. We have

I
(

X(0)
1 , X(0)

2 . . . , X(0)
2T ; Y

)
= H

(
X(0)

1 , X(0)
2 . . . , X(0)

2T

)
−H

(
X(0)

1 , X(0)
2 . . . , X(0)

2T | Y
)

≤
2T

∑
i=1

(
H
(

X(0)
i

)
−H

(
X(0)

i | Y
))

=
2T

∑
i=1

I
(

X(0)
i ; Di

)

= 2T(1− h2(ε))
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As a result, we can write

I (πMIS; Y) ≤ 2T(1− h2(ε)) + 4
√

log n exp
(
−2(log log n)2

)
log n

≤ 4TSmin + 4
√

log n exp
(
−2(log log n)2

)
log n

Combining the above Inequality with Eq. (3.4.4) we obtain

I (πMIS; Y)
I (πs; Y)

≤ 4TSmin + 4
√

log n exp
(
−2(log log n)2) log n

log n
T

= 16Smin + 8 log nv(−2(log log n)2)

< 32Smin.

Hence, the gain of the greedy policy (when allowed to choose 2T tests) can be at most
a fraction 32Smin of the optimal policy which is also allowed to choose 2T tests.

Remark 3.11. Note that for our example to hold, we actually require that Smin to be
at least Ω (1/ log n). Also, note that both Smin and 1/ log n are involved in the lower
bound in Theorem 3.3. It remains an open problem to decide which combination of
Smin and 1/ log n is indeed necessary for the lower bound.

3.5 Summary

In this chapter, we presented a theoretical analysis of the most informative selection
policy for the sequential information maximization problem. We proved lower and
upper bounds which relate the performance of the MIS policy to the performance of the
optimal policy. In particular, our bounds show that the performance of the MIS policy is
closely related to the noise level in the system: Under common assumptions made about
the noise, the sequential information maximization criterion behaves near-optimally.
Our results theoretically justify why the greedily maximizing mutual information has
been found to be effective in theses settings. We further constructed an example where
the greedy policy performed considerably worse compared with the optimal policy.
Our analysis suggests that in such cases, the greedy approach could be misled to pick
non-informative tests, and thus nonmyopic policies, e.g., using look-ahead, might be
required.
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4
Adaptive Information Acquisition for

Decision Making

In §3, we have studied a basic version of the adaptive information acquisition problem,
where the tests and the target random variable Y to be learned are modeled under the
Naı̈ve Bayes structure. This setting is useful when the goal of information gathering is to
reduce the overall uncertainty in the system. However, in many practical applications,
the collection of information is not a goal of its own, but rather a means for making
informed decisions. In such cases, the tests which we can perform might not be directly
informative about the target Y (which now denotes which decision to make). Hence, the
conditional independence assumption no longer holds, and one must consider more
complex probabilistic models and algorithmic frameworks for solving these problems.

Example 4.1. As a running example, let us look at a more general variant of the medical
diagnosis problem: A doctor can adaptively perform medical tests on a patient, each of which
reveals some information about the patient’s physical condition. Now, rather than learning the
patient’s exact physical condition, imagine that the goal for diagnosis is to predict the best
treatment. We can assume that the outcomes of medical tests are conditionally independent
given the patient’s condition, but in general, they are not conditionally independent given the
treatment, which is made based on the patient’s condition. The challenging problem is to devise
an adaptive policy by which the doctor can quickly make effective decisions.
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In this chapter, we focus on such challenging, yet practically relevant decision-making
tasks, where we aim to a learn the value of some unknown target variable through a
sequence of correlated and noisy tests. Here, by “correlated” we mean that test outcomes
can be conditionally dependent given the hidden target random variable Y.

As introduced in §2.2.2, a natural formalism for this problem is by the decision-theoretic
notion of value of information (c.f., Eq. (2.2.4)). It is known that common greedy heuristics,
such as the myopic VoI policy (which greedily optimizes Eq. (2.2.4)), the MIS policy
(which myopically maximizes the information gain w.r.t. the distribution over Y),
and the generalized binary search policy (which greedily maximizes the reduction in
the probability mass of the hypotheses) and can perform arbitrarily poorly [GKR10a].
Crucially, most of these adaptive policies have been designed for gathering information,
but not for making decisions based on this information. In this chapter, we seek to
tackle the decision-making problems, by investigating novel, efficient objectives which
are amenable to greedy optimization.

DiRECt. We start by describing a novel formulation of the optimal value of informa-
tion problem, and introduce DiRECt (see §4.3), an efficient, yet near-optimal algorithm
for solving the nonmyopically optimizing value of information. Crucially, DiRECt uses
a novel surrogate objective that is: (1) aligned with the value of information problem (2)
efficient to evaluate and (3) adaptive submodular. This latter property enables us to utilize
an efficient greedy optimization while providing strong approximation guarantees.

Efficient optimization In addition to pursuing algorithms with strong theoretical
guarantees, we also seek to address the important practical issues that arise when
deploying our algorithms. In fact, the class of submodular surrogate-based algorithms
we consider may scale poorly when facing a large number of tests, because a vanilla
implementation of these algorithms requires enumerating all possible realizations of
the test outcomes, which, in the worst-case could be exponential in the number of tests.
To alleviate this problem, we propose a novel sampling-based strategy (see §4.4), which
allows efficient information gathering with strong theoretical guarantees. We show that
with sufficient amount of samples, one can identify a near-optimal decision with high
probability.
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ECED. One catch for the DiRECt framework is that our theoretical guarantee only
bounds the cost required to perfectly determine the optimal decision (i.e., with 100%
accuracy). However, in practice, due to noise and budget constraint, we may want to
stop performing more tests when we are confident enough. To accommodate such
constraints posed by noise, we further introduce ECED (see §4.5), a novel algorithm
for adaptively acquiring decision-relevant information. We prove that when the test
outcomes are binary, and the noise on test outcomes are mutually independent, ECED
is guaranteed to obtain near-optimal cost. We develop a theoretical framework for
analyzing such sequential policies, where we leverage an information-theoretic auxiliary
function to reason about the effect of noise and combine it with the theory of adaptive
submodularity to attain the near-optimal bound. We demonstrate strong empirical
performance for our proposed algorithms on several problem instances, including
Bayesian experimental design for behavioral economics, interactive troubleshooting,
active preference learning, and active touch-based localization.

Organization of this chapter. We begin by introducing basic notations and the for-
mally stating the value of information problem in §4.1.1. In §4.1.2 we propose an
equivalent formulation of the value of information problem, which we call the Decision
Region Determination (DRD) problem. Most discussions in this chapter will be centered
around it. In §4.2, we review existing methods for solving this problem. In §4.3,
we present the DiRECt algorithm and discuss its theoretical guarantees. In §4.4, we
investigate the practical aspects of our framework and propose an efficient sampling
strategy when exact optimization of our surrogates is not feasible. We move on to the
noisy setting in §4.5, and show how one can use ECED to handle noise in a principled
manner. After presenting our theoretical contributions, we evaluate our algorithms in
§4.6, and summarize this chapter in §4.7.

4.1 Problem Statement

We now state the general optimal value of information problem. Note in this chapter,
we mainly look into this problem from the adaptive minimum cost coverage perspective
(Problem 2.1.3), although some parts of our analysis framework build upon theoretical
tools devised for adaptive submodular maximization.
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Chapter 4. Adaptive Information Acquisition for Decision Making

We start with defining the optimal VoI problem in §4.1.1; then we state its DRD
equivalence in §4.1.2.

4.1.1 The Optimal Value of Information Problem

Assume that there is some unknown hidden discrete random variable Θ ∈ supp(Θ)

upon which we want to make a decision. Here, supp(Θ) denote the support of the
distribution on Θ. In our medical diagnostics example, Θ may represent the condition of
the patient. We are given a set V = {1, . . . , t} of possible tests; performing each test v ∈
V incurs a certain cost of c(v) > 0 and produces an outcome Xv ∈ X that is correlated
with Θ. Further assume that there is a known prior distribution P [Θ, X1, . . . , Xt] over
the hidden variable and test outcomes admitting efficient inference. Crucially, we
assume that Xv’s are conditionally independent given the hidden state Θ, i.e.,

P [Θ, X1, . . . , Xt] = P [Θ] ∏
v∈V

P [Xv | Θ] .

In this chapter, we assume that the parameters of the above distributions are given.

Suppose there is a finite set of decisions Y = {y1, . . . , yn} that we can choose from.
After performing a set of tests and observing their outcomes, we want to make the
best decision given our belief about the hidden variable Θ (e.g., we must decide how
to treat the patient). Hence, the value of Y depends on Θ. The probabilistic model is
given in Fig. 4.1.

. . .X1 X2 Xt

YQ

Figure 4.1: The graphical model.

Formally, as described in §2.2.2, we quantify the benefit of making a decision y ∈ Y for
any θ ∈ supp(Θ) by a utility function u : supp(Θ)×Y → R≥0. We use U(·) to denote
the expected value of a decision. The expected value of a decision y after observing the
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outcomes xA of a set of tests A is

U(y | xA) = Eθ[u(θ, y) | xA] .

The value of a particular set of observations xA is then defined as:

VoI(xA) = max
y∈Y

U(y | xA), (4.1.1)

i.e., the maximum expected utility achievable when acting upon observations xA.

Consider performing all tests, receiving outcomes xV , and making the most informed
decision possible. This would achieve a value of VoI(xV ). However, it may be possible
to reach nearly VoI(xV ) with far fewer tests (see Fig. 4.2a for illustration). Our goal
is to adaptively select the cheapest tests to do so. Formally, we define the regret of a
decision y given observations xA by

R(y | xA) = max
xV :P[xV |xA]>0

[VoI(xV )−U(y | xV )].

Clearly, this regret is also an upper bound on the expected loss in expected utility (if we
stop upon observing xA and committing to action y), i.e., ExV [VoI(xV )−U(y | xV ) | xA].
Our goal is to find a policy of minimum cost with low regret. Formally, for some
fixed small tolerance ε ≥ 0, we seek a policy π∗ with minimum cost, such that upon
termination, π∗ will suffer regret of at most ε:

π∗ ∈ arg min
π

cost(π), s.t.

∀xV ∃y : R(y | S(π, xV )) ≤ ε whenever P [xV ] > 0. (4.1.2)

where recall (from §2.1.2) that S(π, xV ) ⊆ V × X denotes the set of observations
obtained by running policy π until termination (likely before exhausting all tests)
when the tests are in state xV , and cost(π) may either denote the average cost or the
worst-case cost of a policy. We will instantiate the cost(·) function when we present
our algorithms.

In other words, we require that each feasible policy satisfies the following condition:
Upon termination, we must be able to commit to a decision, such that we lose at most
ε expected utility, compared to the optimal decision we could have made if we had
also observed all remaining unobserved variables. (see Fig. 4.2b for an illustration of
the ε-optimal decisions for different observations.) We call Problem 4.1.2 the nonmyopic
value of information problem for achieving near-maximal utility (NVOI-NMU).

71



Chapter 4. Adaptive Information Acquisition for Decision Making

highnormal

bone injurypneumonia

acetaminophensurgery

drink fluidsantibiotics

light

v1

v2 v4

v7 v3
y1

y8

y2

y6

(a) Adaptive policy for optimal treatment

y1 y3 y4y2

x(3)
Vx(1)

V x(2)
V x(4)

V x(5)
V

(b) Treatments and patient’s conditions

Figure 4.2: Illustration of an adaptive policy for learning the optimal treatment in
medical diagnosis. The bipartite graph on the right represents the mapping from
patient’s conditions (i.e., root-causes) to their near-optimal treatments (i.e., the util-
ity of performing the treatment is at most ε away from the maximal utility for the
corresponding root-cause).

Remark 4.2. In classical value of information, costs and utilities have the same units,
and the goal is to maximize benefit minus cost. In many cases (e.g. medical diagnosis),
this is not the case, so we formulate our problem to achieve near-maximal utility with
minimum cost.

4.1.2 Decision Region Determination

We now state an equivalent formulation of the NVOI-NMU problem, which we call the
Decision Region Determination (DRD) problem. In DRD, we are given

1. a set of hypotheses H := {h1, . . . , hs};
2. a random variable H distributed over H with known distribution P;

3. a set of tests V = {1, . . . , t} modeled as deterministic functions f1, . . . ft : H → X ;

4. a cost function c : V → R≥0 and

5. a collection of subsets Ry1 , . . . ,Ryn ⊆ H called decision regions.

We seek a policy π∗ of minimum cost (which adaptively picks tests v, observes their
outcomes Xv = fv(H), where H ∈ H is the unknown hypothesis), such that upon
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termination, there exists at least one decision region that contains all hypotheses
consistent with the observations made by the policy. That is, we seek

π∗ ∈ arg min
π

cost(π), s.t. ∀h ∃y : H(S(π, h)) ⊆ Ry. (4.1.3)

Hereby h ∈ H, and

H(xA) , {h′ ∈ H : (i, x) ∈ xA ⇒ fi(h′) = x} (4.1.4)

is the set of hypotheses consistent with xA. To reduce the NVOI-NMU Problem (4.1.2)
to DRD (4.1.3), we interpret every outcome vector xV ∈ X V with positive probability as
a hypothesis h. The interpretation of the prior, tests and costs follow immediately. Note
that in DRD we do not have an explicit notion of “root-cause” as is in NVOI-NMU. It
remains to define the decision regions. For each decision y, we set Ry to be the set of
outcome vectors, for which y is an ε-optimal action, or formally:

Ry , {xV : U(y | xV ) ≥ VoI(xV )− ε}.

Fig. 4.3 illustrates the relation between decision regions Ry’s (which are indexed by
y’s) and hypotheses h’s (or equivalently, the outcomes xV ’s) with the medical diagnosis
example (c.f. Example 4.1).

h1

h2

h3
h4

h5

Ry1

Ry2

Ry3

Ry4

Figure 4.3: Hypotheses and decision regions drawn from the bipartite graph in Fig. 4.2b.

We summarize the (bijective) mapping from NVOI-NMU to DRD in Table 4.1.

Remark 4.3. In Problem 4.1.3, we require that test outcomes XV are deterministic
given any hypothesis h ∈ H. The prior distribution on H is, in fact, P [X1, . . . , Xt] =

∑θ∈supp(Θ) P [Θ = θ, X1, . . . , Xt]. Thus, to construct the DRD problem from NVOI-
NMU, we can simply enumerate all test outcomes (with non-zero probabilities) as our
hypotheses, after which we only need to deal with deterministic distributions.
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NVOI-NMU DRD
tests test v ∈ V test v ∈ V

test outcomes full realization: xV ∈ X V hypothesis: h ∈ H
target decision decision: y ∈ Y decision region: Ry ⊆ H
latent variable root-cause: θ -

Table 4.1: Mapping from NVOI-NMU to DRD.

Remark 4.4. In the general (non-realizable/noisy) case, i.e., P [Xv = xv | Θ] ∈ [0, 1],
each root-cause corresponds to a set of hypotheses with non-zero probabilities {h :
P [H = h | θ] > 0}. In the realizable case, i.e., when P [Xv = xv | Θ] ∈ {0, 1} ∀v ∈
V , xv ∈ X , it holds that |{h : P [H = h | θ] > 0}| = 1 ∀θ ∈ supp(Θ), meaning that each
root-cause in NVOI-NMU corresponds to (exactly) one hypothesis in DRD.

4.2 Existing Approaches

In this section, we review some existing approaches for solving the NVOI-NMU/DRD
problem, and provide problem instances showing why these approaches do not always
work well.

4.2.1 Posterior-based Approaches

There is a large family of adaptive greedy policies (including the popular MIS policy
πMIS (as considered in §3), and the myopic VoI policy πVoI), which use only information
about the posterior target variable distribution to select the next test. These approaches
are known as the posterior-based approaches [GKR10a]. More precisely, these policies
define an objective/score function ∆(·) which maps distributions over Y to real numbers,
and at each time step select the test v which maximizes the score of the posterior
distribution over y generated by adding xv to the previously seen test outcomes. The
most informative policy is posterior–based, as it scores each test using −1 times the
entropy of the posterior distribution of Y:

∆MIS(v | xA) := H (Y | xA)−Exv [H (Y | xA, xv) | xA] . (4.2.1)
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Likewise, the myopic value of information policy is also posterior–based, as it scores
each test based on its expected gain in the value function, which is based on the
posterior distribution on Y:

∆VoI(v | xA) := Exv

[
VoI(xA∪{v}) | xA

]
−VoI(xA), (4.2.2)

where VoI(·) is defined according to Eq. (4.1.1).

One can construct problem instances where the posterior-based approaches may fail (in
the sense that they require cost which is exponentially higher than the optimal policy).
In particular, Golovin, Krause, and Ray [GKR10a] show that

Theorem 4.5 (Theorem 9 of Golovin, Krause, and Ray [GKR10a]). There exists a family of
DRD instances with uniform priors such that the expect cost costavg(π) = Ω

(
s

log s

)
costavg(π∗)

for any posterior–based policy π, where s is the number of hypotheses and π∗ is an optimal
policy.

In the following, we provide a treasure-hunt example that exhibits the above property.

A bad example for the posterior-based policies. Consider the problem instance
illustrated in Fig. 4.4. Fix q > 0 to be some integer, and let n = |Y| = 2q. For each
target value yi ∈ Y , there exist two hypotheses, i.e., hi,1, hi,0, such that hi,1, hi,0 ∈ Ryi .
Denote a hypothesis as hi,x, if it belongs to the region of yi and is indexed by x. We
assume a uniform prior over the hypotheses: {hi,x}i∈{1,...,t},x∈0,1.

h1,1

h1,0 h2,0

h2,1

hn,0

hn,1. . .

n = 2q

Figure 4.4: A DRD problem instance with non-overlapping decision regions.

There are three set of tests, and all of them have binary outcomes and unit cost (i.e.,
X = {0, 1}, and c(v) ≡ 1). The first set V1 := {v0} contains one test v0, which tells us
the value of x of the underlying hypothesis θi,x. Hence for all i, H = hi,x ⇒ Xv0 = x.
The second set of tests are designed to help us quickly discover the index of the target
value via binary search if we have already run v0, but to offer no information whatsoever
(in terms of expected reduction in the prediction error, or expected reduction in entropy
of Y) if v0 has not yet been run. There are a total number of q tests in the second set

75



Chapter 4. Adaptive Information Acquisition for Decision Making

h1,1

h1,0 h2,0

h2,1

hn,0

hn,1. . .

V1 = {v0}

h1,1

h1,0 h2,0

h2,1

hn,0

hn,1. . .

h1,1

h1,0 h2,0

h2,1

hn,0

hn,1. . .

V2 = {v1, . . . , vs}

V3 = {vseq
1 , . . . , vseq

t }

Figure 4.5: Illustration of the treasure hunt example where posterior-based policies fail.

V2 := {v1, v2, . . . , vq}. For z ∈ {1, . . . , n}, let bk(z) be the kth least-significant bit of the
binary encoding of z, so that z = ∑

q
k=1 2k−1bk(z). Then, if H = hi,o, then the outcome

of test vk ∈ V2 is Xk = 1 {φk(i) = o}. The third set of tests are designed to allow us
to do a (comparatively slow) sequential search on the index of the the target values.
Specifically, we have V3 := {vseq

1 , . . . , vseq
n }, such that H = hi,x ⇒ Xvseq

k
= 1 {i = k}. We

illustrate these three sets of tests in Fig. 4.5.

Now consider running a posterior-based policy, say, πMIS (the same analysis also
applies to the myopic value of information policy, which we omit from the paper).
Note that in the beginning, no single test from V1 ∪ V2 results in any change in the
distribution over Y, as it remains uniform no matter with test is performed. Hence, the
maximal informative policy only picks tests from V3, which have non-zero (positive)
expected reduction in the posterior entropy of Y. In the likely event that the test chosen
is not the index of Y, we are left with a residual problem in which tests in V1 ∪ V2

still have no effect on the posterior. The only difference is that there is one less class,
but the prior remains uniform. Hence our previous argument still applies, and π will
repeatedly select tests in V3, until a test has an outcome of 1. In expectation, the cost of
π is least cost(πMIS) ≥ 1

n ∑n
z=1 z = n+1

2 .

On the other hand, a smarter policy π∗ will select test v0 ∈ V1 first, and then performs
a binary search by running test v1, . . . , vs ∈ V2 to determine bk(i) for all 1 ≤ k ≤ s (and
hence to determine the index i of Y). Since the tests have unit cost, the cost of π∗ is
cost(π∗) = q + 1.
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Since n = 2q, and s = 2n = 2q+1, we conclude that

cost(πMIS) =
n + 1

2
>

n
2
=

s
4

q + 1
log s

=
s

4 log(s)
cost(π∗).

4.2.2 Submodular Surrogates

An alternative approach to the posterior-based methods is to work directly with the
probability mass of the hypotheses (instead of the normalized posterior probabilities). In
the following, we review a class of objective functions that exhibit adaptive submodularity,
which we call submodular surrogates, and elaborate on the pros and cons of the greedy
policies based on those objectives.

Remark 4.6. It is a common strategy in machine learning to optimize surrogate objective
functions. For example, consider a supervised learning task where we want to minimize
classification error. Often we don’t minimize misclassification error directly; instead,
we optimize some surrogate, such as the hinge loss or log-loss. The approaches we
discuss in this section is similar in spirit.

GBS: Generalized Binary Search

We first consider GBS, a greedy policy that generalizes the classical binary search
algorithm. To be consistent with the active learning literature, we call H(xA) (as
defined in Eq (4.1.4)) the version space that is consistent with observation xA. In the
Bayesian setting, GBS myopically attempts to shrink a measure of the version space
(i.e., the cardinality or the probability mass) as quickly as possible. Formally, the GBS
objective function is defined as

fGBS(xA) := ∑
h∈H

P [h, xA] .

It thus scores a test by

∆GBS(v | xA) := ∑
h∈H

P [h, xA]−∑
xv

P [xv | xA] ∑
h∈H

P [h, xA, xv] ,

and picks the one that maximizes the ∆GBS(v | xA)/c(v). It can be shown that the
function fGBS is adaptive submodular. From Theorem 2.7 we know that in the realizable
case, GBS achieves O

(
1

minh P[h]

)
approximation guarantee, if the goal is to identify the
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true hypothesis. Also, if minh P [h] is sufficiently small, running GBS on a modified prior
p(h) ∝ max

{
P [h] , 1

|H|2
}

improves the approximation factor to O (log |H|) [KPB99b;
GK11b].

The above result is useful if each region Ry in the DRD problem (4.1.3) contains exactly
one hypothesis. This special case is also known as the Optimal Decision Tree (ODT)
problem [GG74; Ark+93; Gup+10; GK11a]. For general DRD problems, unfortunately,
due to the lack of consideration of decision regions, GBS can perform quite badly. We
provide a problem instance below to demonstrate when GBS may fail.

A bad example for GBS. Assume we are given a uniform prior over s hypotheses,
h1, . . . , hs, and two target decision regions h1, . . . , hs−1 ∈ Ry1 , and hs ∈ Ry2 . There are s
tests V = {1, . . . , s} such that P [Xv = 1 | hi] = 1 {i = v} (all of unit cost). Here, 1 {·}
is the indicator function. See Fig. 4.6 for illustration.

h1, . . . , hs�1

Xs = 1

Xi = 1

X1 = 1

Ry1 Ry2

hs

Figure 4.6: Example problem instance where GBS performs badly.

In this case, the optimal policy only needs to select test s. However GBS may choose
tests {1, . . . , s} in order until running test v, where H = hv is the true root-cause. Given
our uniform prior, it takes s/2 tests in expectation until this happens, so that GBS pays,
in expectation, s/2 times the optimal expected cost in this instance.

EC2: Equivalence Class Edge Cutting

Now let us consider a special case of the DRD problem, where the decision regions are
disjoint, i.e., Ryi ∩Ryj = ∅ for i 6= j. This means that each hypothesis h is associated
with a unique decision. Such problem is known as the Equivalence Class Determination
(ECD) problem [GKR10a].

Golovin, Krause, and Ray [GKR10a] proposes an algorithm, namely, Equivalence Class
Edge Cutting (EC2), which considers hypotheses as nodes in a graph GEC = (H, E), and
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defines weighted edges between hypotheses in different decision regions (see Fig. 4.7a):

E = ∪i 6=j{(h, h′) : h ∈ Ryi , h′ ∈ Ryj}

The weight of an edge is defined as w((h, h′)) = P [h] ·P [h′]; similarly, the weight of a
set of edges is w(E ′) = ∑(h,h′)∈E ′ w((h, h′)). An edge is consistent with the observation
iff both hypotheses incident to the edge are consistent. Hence, a test v with outcome
xv is said to cut edges E(xv) = {(h, h′) ∈ E : fv(h) 6= xv ∨ fv(h′) 6= xv} (see Fig. 4.7b).
Performing tests will cut edges inconsistent with the observed test outcomes, and we
aim to eliminate all inconsistent edges (until there is a single equivalence class/decision
region left), while minimizing the expected cost incurred.

[0,0,0]

[1,0,0]

[1,1,1]

[1,0,1]

[0,1,0]

(a) Initializing the ECD graph GEC to be cut

[0,0,0]

[0,1,0]

[1,0,0]

[1,1,1]

[1,0,1]

(b) Observing X1 = 1.

Figure 4.7: Illustration of the equivalence class edge cutting algorithm. Hypotheses are
represented in dots. The size of a dot is proportional to its probabilities.

The EC2 objective is defined as the total weight of edges cut:

fEC2(xA) := w
( ⋃

v∈A
E(xv)

)
. (4.2.3)

We observe that for solving the DRD problem, we can group together all hypotheses
that share the same region assignments. Let P

[
Ryi

]
be the total prior probability mass

of all hypotheses h in Ryi . Then the weight of edges between distinct decision regions
Ryi ,Ryj is w(Ryi ×Ryj) = ∑h∈Ryi ,h

′∈Ryj
P [h]P [h′] = P

[
Ryi

]
P
[
Ryj

]
.

Naively, computing the total edge weight requires enumerating all pairs of regions.
However, we can compute this in linear time by noting it is equivalent to an elementary
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symmetric polynomial of degree 2: ∑i 6=j w(Ryi ×Ryj) =
1
2

((
∑i P

[
Ryi

])2 −∑i P
[
Ryi

]2).
We similarly compute the total edge weight after observations xA using P

[
Ryi ∩H(xA)

]

for the probability mass of all hypotheses in Ryi consistent with observations xA. Fi-
nally, we subtract these two quantities to compute

fEC2(xA) = ∑
i 6=j

w(Ryi ×Ryj)−∑
i 6=j

w(Ryi ∩H(xA)×Ryj ∩H(xA)).

EC2 scores a test by its expected marginal gain in fEC2 , and at each round picks
the one that maximizes the benefit-cost ratio. It can be shown that fEC2 is adaptive
submodular and strongly adaptive monotone (c.f. Definition 2.5) [GK11a], and hence
EC2 is near-optimal for the ECD problem.

HEC: Hyperedge Cutting

EC2 crucially relies on the fact that decision regions are disjoint. In the presence of
overlapping regions, there is no principled way to apply EC2. Recently, we propose
a natural generalization of EC2, which we call the Hyperedge Cutting algorithm (HEC)
[Jav+14], and prove that it can near-optimally solve the general DRD problem.

Different from EC2 which deals with the ECD graph GEC (e.g., Fig. 4.7a), the construc-
tion of HEC is based upon an alternate representation – a hypergraph GHEC := (H, E)
for splitting decision regions. Observing certain test outcomes corresponds to down
weighting or cutting hyperedges in this hypergraph. Here, our hyperedges are not sets,
but multisets, a generalization of sets where members are allowed to appear more than
once. As a result, a node can potentially appear in a hyperedge multiple times. See
Fig. 4.8b for illustration.

In HEC, the set of hyperedges E consists of all multisets E of precisely k hypotheses,
E = {h1, . . . , hk}, such that a single decision region does not contain them all:

E = {E : |E| = k ∧ @ R s.t. ∀h ∈ E, h ∈ R}.

The key to attaining our results is the proper selection of hyperedge cardinality k.
If k is too small, we cannot use solve the DRD problem; if k is too large, we waste
computational effort, and our theoretical bounds loosen. Let us use ζy to denote the
number of partitions, or subregions of decision region Ry, where a subregion represents
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a group of hypotheses which share the same region assignments. Then, a practical
choice of the cardinality k is

k = min
(

max
h∈H
|{R : h ∈ R}|, max

y∈Y
ζy

)
+ 1. (4.2.4)

Hereby, maxh |{R : h ∈ R}| is the maximum number of regions that a hypothesis can
be in, and maxy∈Y ζy is the maximum number of partitions in any region.

As with EC2, we define the weight of a hyperedge E as w(E) = ∏h∈E P [h]; the weight
of a set of edges is w(E ′) = ∑E∈E ′ w(E). A test v with outcome xv is said to cut
hyperedges E(xv) = {E ∈ E : ∃h ∈ E, s.t. fv(h) 6= xv} (see Fig. 4.8b). We aim to
eliminate all inconsistent edges (until there is a single equivalence class/decision region
left), while minimizing the expected cost incurred.

1,1,3 1,2,3 1,3,3

h1 h2 h3

Ry2Ry1

(a) Initializing the hypergraph GHEC

1,1,X 1,2,X 1,X,X

h1 h2 h3

Ry2Ry1

(b) Observing h3 to be inconsistent.

Figure 4.8: Illustration of the hyperedge cutting algorithm.

Following the definition of the EC2 objective, the HEC objective is defined as the total
weight of hyperedges cut:

fHEC(xA) := w
( ⋃

v∈A
E(xv)

)
. (4.2.5)

Theorem 4.7. The objective function fHEC defined in Eq. (4.2.5) is adaptive submodular and
strongly adaptive monotone.

By Theorem 4.7 and Theorem 2.7, we obtain the following result for our HEC Algorithm:

Theorem 4.8. Assume a rational prior on the hypotheses. Let k be the hyperedge cardinality,
π∗ be the optimal policy, and pmin = minh∈H P(h). Then, the performance of πHEC is bounded
by: cost(πHEC) ≤ (k ln(1/pmin) + 1) cost(π∗).
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Note that as a consequence of adaptive submodularity, HEC also enjoys approximation
guarantees against worst-case realizations of tests.

Remark 4.9. For the special case of disjoint regions (i.e., the ECD Problem, corresponding
to k = 2), our objective fHEC is equivalent to fEC2 , and hence our Theorem 4.8 strictly
generalizes the results of Golovin, Krause, and Ray [GKR10a]. Furthermore, in the
special case where each region contains exactly one hypothesis (k = 1), and each test
can have at most two outcomes, HEC is equivalent to the GBS algorithm and recovers
its approximation guarantee.

Remark 4.10. The computational bottleneck for HEC lies in the construction of this
hypergraph. In the worst case, this algorithm still has complexity O

(
|H|k

)
(in principle,

one can reduce it to O
(
(number of subregions)k) by viewing each subregion as a node

in the hypergraph; however it is still exponential in k). This occurs when many, at least
k, subregions share a single region. The complexity is then controlled by how many
distinct subregions a single region can be shattered into, and the largest number of
regions a single hypothesis can belong to. Thus, when we have large overlap between
regions – the common case for NVOI-NMU, in particular with larger ε – HEC becomes
infeasible.

4.3 The Decision Region Edge Cutting Algorithm

We now present Decision Region Edge Cutting (DiRECt), an efficient and near-optimal
algorithm for solving the DRD problem.

4.3.1 The Noisy-OR Construction

Let n = |Y| be the number of decisions in Y . Our strategy is to reduce the DRD
problem to O(n) instances of the ECD problem, such that solving any one of them is
sufficient for solving the DRD problem. Crucially, the problem we end up solving
depends on the unknown hypothesis h∗. We design our surrogate DiRECt so that it
adaptively determines which instance to solve to minimize the expected total cost.

Concretely, we construct n different subproblem instances, one for each decision. The
role of subproblem i is to determine whether the unknown hypothesis h∗ is contained
in decision region Ryi or not. Thus we aim to distinguish all the hypotheses in this
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Edges cut by          

Ry1

Ry2

Ry3
h1

h2

h3

h4

Xv

always
Xv = 1
Xv = 0

Xv = 1

Xv = 0

Subregions

Ry1

Ry2

Ry3
Ry1

Ry2

Ry3 Ry1

Ry2

Ry3

_ _

Xv

Figure 4.9: A toy DRD problem with three decision regions {Ry1 ,Ry2 ,Ry3}, and four
possible hypotheses {h1, h2, h3, h4}. v is a test with two possible outcomes: fv(h1) =

fv(h3) = 1 and fv(h2) = fv(h4) = 0. For each possible decision we can make, we
construct a separate ECD problem: The three figures on the right illustrate the EC2

graphs for each of the ECD problems. We can successfully make an optimal decision
once one of the graphs is fully cut: e.g., if Xv = 1, the second graph is fully cut, and we
identify the optimal decision y2.

decision region from the rest. To achieve this, we model subproblem i as an ECD
problem, with one of the decision regions being Ryi . Further, similarly with the
construction of HEC, we partition the remaining set of hypotheses H \ Ryi into a
collection of subregions, such that within each subregion, all hypotheses are contained
in the same collection of decision regions from the original DRD problem. All the
subregions are disjoint by definition, and hence we have a well-defined ECD problem.
Solving this problem amounts to cutting all the edges between Ryi and the subregions.
See Figure 4.9 for illustration.

In this ECD problem, once all the edges are cut, either yi is the optimal decision, or
one of the subregions encodes the optimal decision. Therefore, optimizing the ECD
problem associated with one of the n graphs is a sufficient condition for identifying the
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optimal decision. Further notice that among the n ECD problems associated with the
n graphs, at least one of them has to be solved (i.e., all edges cut) before we uncover
the optimal decision. Therefore, we get a necessary condition of the DRD constraints:
we have to cut all the edges in at least one of the n graphs. This motives us to apply
a logical OR operation on the n optimization problems. Denote the EC2 objective
function for subproblem i as f i

EC2 , and normalize them so that f i
EC2(∅) = 0 corresponds

to observing nothing and f i
EC2(xV ) = 1 corresponds to all edges being cut. We combine

the objective functions f 1
EC2 , . . . , f n

EC2 using a Noisy-OR formulation:

fDiRECt(xA) = 1−
n

∏
i

(
1− f i

EC2(xA)
)

. (4.3.1)

Note that by design fDiRECt(xA) = 1 iff f i
EC2(xA) = 1 for at least one i. Thus, the DRD

(and hence NVOI-NMU) Problem is formally equivalent to the following problem:

π∗ ∈ arg min
π

cost(π), s.t.

∀xV : fDiRECt(S(π, xV )) ≥ 1 whenever P [xV ] > 0. (4.3.2)

The crucial advantage of this new formulation is given by the following Lemma:

Lemma 4.11. fDiRECt is strongly adaptive monotone, and adaptive submodular w.r.t. P.

That is, the Noisy-OR formulation for multiple EC2 functions preserves adaptive
submodularity. The proof of this result can be found in §A.2.1. These properties make
fDiRECt amenable for efficient greedy optimization. Formally, let ∆ fDiRECt

(v | xA) :=

Exv

[
fDiRECt(xA∪{t})− fDiRECt(xA) | xA

]
be the expected marginal benefit in fDiRECt

by adding test t to xA. The DiRECt algorithm starts with the empty set, and at each
iteration, having already observed xA, selects the test v∗ with the largest benefit-to-cost
ratio: t∗ ∈ arg maxv ∆ fDiRECt

(v | xA)/c(t). A major benefit of adaptive submodularity
is that we can use a technique called lazy evaluation to dramatically speed up the
selection process [GK11a]. Further, we have the following performance guarantee:

Theorem 4.12. Let n be the number of decisions, pmin = minh∈H P [h], πDiRECt be the
adaptive greedy policy w.r.t. the objective function Eq. (4.3.1). Then it holds that

costavg(πDiRECt) ≤ (2n ln (1/pmin) + 1) costavg(π
∗),

where π∗ is the optimal policy for Problem (4.3.2), and hence also the NVOI-NMU and DRD
Problems.
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This result follows from Lemma 4.11 and Theorem 2.7. More details are given in §A.2.2.
The bound of the greedy algorithm is linear in the number of decision regions. Here
the factor n is a result of taking the product of n EC2 instances. In the following, we
show how this bound can often be improved.

Remark 4.13. Noisy-OR constructions have been used for classical submodular set
functions [GB11b; DHK14], utilizing the fact that f = 1−∏n

i (1− fi) is submodular if
each fi is submodular. However, the function f is not necessarily adaptive submodular,
even when each fi is adaptive submodular and strongly adaptively monotone.

4.3.2 Improving the bound via Graph Coloring

For certain applications, the number of decisions n can be large. In the extreme
case where we have a unique decision for each possible observation, the bound of
Theorem 4.12 becomes trivial. As noted, this is a result of taking the product of n EC2

instances. Thus, we can improve this bound by constructing fewer instances, each with
several non-overlapping decision regions. As long as every decision region is accounted
for by at least one ECD instance, problem 4.3.2 remains equivalent to the DRD problem.

We select the sets of decision regions for each ECD instance through graph coloring.
Formally, we construct an undirected graph over all decision regions, denoted as GY,
where we establish an edge between any pair of overlapping decision regions. That is,
two decision regions Ryi and Ryj are adjacent in GY iff there exists a hypothesis h for
which both decisions are optimal, i.e., h ∈ Ryi ∩Ryj . See Figure 4.10 for illustration.
Finding a minimal set of non-overlapping decision region sets that covers all decisions
is equivalent to solving a graph coloring problem, where the goal is to color the vertices
of the graph GY, such that no two adjacent vertices share the same color, using as
few colors as possible. Thus, we can construct one ECD problem for all the decision
regions of the same color, resulting in r different instances, and then use the Noisy-OR
formulation to assemble these objective functions. That gives us the following theorem:

Theorem 4.14. Let πDiRECt be the adaptive greedy policy w.r.t. the objective function Eq. (4.3.1),
which is computed over ECD problem instances obtained via graph coloring. Let r be the num-
ber of colors used. Then it holds that

costavg(πDiRECt) ≤ (2r ln (1/pmin) + 1) costavg(π
∗),

where pmin = minh∈H P [h], and π∗ is the optimal policy.
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Ry2

Ry1 Ry3

Ry4

Ry5 Ry6

(a) The DRD problem instance

Ry2

Ry1
Ry3

Ry4

Ry5 Ry6

(b) Coloring the DRD graph GY

Ry2

Ry1 Ry3

Ry4

Ry5
Ry6

(c) The ECD subproblem corresponding to

Figure 4.10: Reducing the cost upper bound via graph coloring. We only need to
construct 3 ECD subproblems to compute fDiRECt, instead of 6. The middle figure
shows a possible coloring assignment on the decision graph of the DRD problem. On
the right, we show one example ECD problem instance, corresponding to regions
{Ry1 ,Ry4 ,Ry6} (colored orange). In this ECD problem instance, there are 7 disjoint
regions: 3 (disjoint) decision regions Ry1 , Ry4 , Ry6 , and 4 subregions, namely Ry2 \
(Ry1 ∪Ry3), Ry3 \ (Ry1 ∪Ry2), (Ry2 ∩Ry3) \ Ry1 , and Ry5 \ (Ry4 ∪Ry6).

While obtaining minimum graph colorings is NP-hard in general, one can show that
every graph can be efficiently colored with at most one color more than the maximum
vertex degree, denoted by deg, using a greedy coloring algorithm [WP67]: consider the
vertices in descending order according to the degree; we assign to a vertex the smallest
available color not used by its neighbors, adding a fresh color if needed. In the DRD
setting, deg is the maximal number of decision regions that any decision region can be
overlapped with. In practice, greedy coloring often requires far fewer colors than this
upper bound. Additionally, note that when regions are disjoint, deg = 0 and DiRECt
reverts to the EC2 algorithm.
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4.4 Efficient Optimization of VoI

The computational complexity of DiRECt depends linearly1 on the number of hypothe-
ses s in the DRD problem, i.e., the number of all possible outcome vectors xV in the
NVOI-NMU problem. However, s can be large, in particular in settings where we model
complex joint distributions P [Θ, X1, . . . , Xt] (assuming tests have binary outcomes, s
can be 2t). Therefore it is often computationally prohibitive to keep track of all the noisy
realizations of a root-cause. In this section, we focus on the computational challenge
and discuss how one can exploit the structure of the probabilistic model to improve the
computational efficiency of the DiRECt framework.

4.4.1 The Optimal Hypothesis Enumeration Problem

Assume that the prior P [Θ] on the root-cause is known, and the prior distribution
over hypotheses are fully specified by the conditional probability distribution table
(CPT): P = [$ij]t×m, where $ij , P

[
Xv = 1 | Θ = θj

]
for i ∈ [t] and j ∈ [m]. Let H̃ be

the set of hypotheses sampled from the CPT. Clearly, an “ideal” set H̃ for DRD should
be (1) rich enough to enclose promising candidates of true underlying hypotheses,
and (2) compact enough so that it excludes hypotheses that are extremely rare and
ensures feasibility of the algorithm. To this end, we define the coverage of H̃ as its
total probability mass: Z(H̃) = ∑h∈H̃P[h], and the coverage of H̃ conditioned on y as
Z(H̃ | θ) = ∑h∈H̃P[h | Θ = θ]. We aim to attain a high coverage over H using samples
while keeping the sample size as small as possible. Formally, to achieve 1− η coverage,
we seek H̃∗ = arg minH̃:Z(H̃)≥1−η |H̃|.
Existing approaches for generating hypotheses, such as Monte-Carlo sampling, often
require a very large sample size to reach a certain coverage of the total probability
mass. To illustrate this, let us consider a simple multinomial distribution that describes
the probability distribution of four mutually exclusive hypotheses (h1, h2, h3, h4), with
probabilities (0.94, 0.03, 0.02, 0.01). Suppose that we have a hypothesis generator that
directly samples hypotheses according to their probabilities (as we were rolling a dice).
If we require observing a subset of hypotheses that cover at least 98% of the total mass

1Since DiRECt requires the computation of r EC2 scores, the computational complexity of DiRECt is
linear in both r (the number of colors used) and s (the number of hypotheses).
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Figure 4.11: The dynamic hypothesis enumeration framework.

(i.e. h1, h2 and at least one of h3 or h4) with a confidence level of at least 99%, then we
need at least a sample of average size 174, to cover the “rare” observations.

4.4.2 Dynamic Hypothesis Enumeration

The problem of the Monte-Carlo approach is that it lacks consideration of the structure
of the VoI problem. Instead, our method aims at providing the most likely configu-
rations – covering up to a pre-specified fraction of the total probability mass – in an
efficient and adaptive way. In a nutshell, we adaptively maintain a pool of hypotheses
that constitute a sample with small size and coverage.

In particular, our sampling scheme consists of two modules: (1) Algorithm 2 locally
enumerates the most likely hypotheses for each hidden state, which will cover – by
taking the union over all hidden states – at least (1− η) fraction of the total probability
mass of all hypotheses; and (2) Algorithm 3 provides a global mechanism that, after
observing a test outcome, adaptively filters out inconsistent hypotheses and re-samples
new hypotheses; re-sampling is done by calling Algorithm 2, to ensure that the new
sample’s coverage is sufficient to derive reliable statistics when deriving the new
optimal test to be performed. The overall framework is illustrated in Fig. 4.11.
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Generating Hypotheses for Each Hidden State

The basic module of our hypothesis enumeration framework is a “local” hypothesis
generator, which enumerates the most likely hypotheses for any given hidden state. It
incrementally builds a Directed Acyclic Graph (DAG) of hypotheses, starting from the
most likely configuration. At each step, the leaf nodes of the DAG represent the current
candidate frontier, i.e., the set of hypotheses that dominate all other candidate hypotheses
in terms of likelihood. This set is used to generate the remaining hypotheses through a
“children generation” mechanism: the next most likely hypothesis of candidate frontier
is identified, and its (at most two) children are added as new leaf nodes to the DAG.

The input of Algorithm 2 consists of the given hidden state value θ, the associated
outcome probability vector over n tests, i.e., P [xv | θ] (v = 1, . . . , t), and the threshold
of coverage η. Optionally, it might be given a candidate frontier Fθ, which is defined as
a list of consistent hypotheses h with their log-probability weights λθ(h) = P [h | θ, xA].
Fθ is obtained as a by-product when calling the same module for the same θ at the
previous iterations and is used as a seed set of nodes to further expand the DAG.

W.l.o.g., we can assume that tests’ outcomes are defined in such a way that P [Xv = 1 | θ] ≥
0.5 (if not, we can redefine a test so that the label is flipped). Initially (line 2), the
tests are rearranged in decreasing order of P [Xv = 1 | θ]. Thereby, the last test will
be the one with the highest uncertainty; hence flipping the sign of this test will have
the minimal effect on the overall likelihood. The generator then proceeds to enumer-
ate the most likely hypotheses corresponding to the given hidden state θ. At line 9,
the two children hypotheses are generated as follows. For the first child, if the last
(right-most) bit of h∗ is 1, we then create hc1 by switching the last bit to 0. For in-
stance, the child hypothesis hc1 of h∗ = [0, 1, 1, 0, 1] is [0, 1, 1, 0, 0]. Its log-probability is
obtained by λθ(hc1) = λθ(h∗) + qn − pn. For the second child, we first need to locate
the right-most “[1, 0]” pair in h∗ (if there exists any; otherwise we do nothing), and
the create hc2 by switching “[1, 0]” into “[0, 1]”. For instance, the child hypothesis
hc2 of h∗ = [0, 1, 1, 0, 1] is [0, 1, 0, 1, 1]. Its associated log-probability is computed by
λθ(hc2) = λθ(h∗) + qv − pv + pv+1 − qv+1, where i is the bit index of the “1” in the
right-most “[1, 0]” pair.

As output, Algorithm 2 produces a ranked list L∗θ of the most likely hypotheses for a
given θ, and their log-probabilities λθ(h) = log(P [h | θ, xA]), such that ∑h∈L∗θ

exp(λθ(h)) ≥
(1− η). In addition, it also produces a residual frontier Fθ that will be used, after
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Algorithm 2: Generate the most likely hypotheses for root-cause θ

1 Input: Root-cause θ, Conditional probability table P, coverage threshold η,
(optional) frontier Fθ;

begin
2 Sort tests in decreasing order of P [Xv = 1 | θ];

foreach v ∈ {1, . . . , t} do
3 pv ← log(P [Xv = 1 | θ]);
4 qv ← log(P [Xv = 0 | θ]);

end
if Fθ is empty then

5 Fθ ← {h1 = [1, 1, . . . , 1]}, with log-weight λθ(h1) = ∑v log pv ;
6 L∗θ ← ∅;

end
while ∑h∈L∗θ

exp(λθ(h)) < (1− η) do

7 h∗ ← arg maxh∈Fθ
λθ(h);

8 Fθ ← Fθ \ {h∗}, L∗θ ← L∗θ ∪ {h∗};
9 Generate (at most) 2 children hc1 , hc2 from h∗;

10 Fθ ← Fθ ∪ {hc1 , hc2};
end

11 Output: Most likely hypotheses L∗θ for θ, log- probabilities
λθ(h) = log(P [h | θ, xA]), and Fθ.

end

filtering and transformation, as a new “seed” list for next iteration.

Iterative Filtering and Hypothesis Re-sampling

After generating the most likely hypotheses for each hidden state, we merge them into
a global set and compute their marginal likelihoods. We dynamically re-sample new
hypotheses as more observations are made. Re-sampling is necessary to constantly
guarantee that the sample set that covers at least 1− η of the total remaining mass,
after new observations (test outcomes) become available. The detailed description of
the module is provided in Algorithm 3.
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Algorithm 3: Iterative Filtering and Re-sampling

1 Input: Conditional probability table θ, Prior P[Θ], coverage threshold η;
begin

2 H̃ ← ∅;
while stopping condition for EC2 not reached do

foreach y ∈ {y1, . . . , ym} do
3 Call Algorithm 2 to generate L∗θ ;
4 H̃ ← H̃ ∪ L∗;

end
foreach h ∈ H̃ do

5 p(h | xA)← ∑θ exp(λθ(h)) ·P [θ | xA];

end
6 Run DiRECt to determine the next test v; A ← A∪ {v};
7 Observe xv; xA ← xA ∪ {xv};
8 Update P [θ | xA];
9 λθ(h)← λθ(h)− log P [xv | θ];

10 Filter out inconsistent hypotheses in L∗θ and Fθ;
11 Remove test v from the list of available tests;

end
12 Output: (test - outcome) vectors xA, decision R

end

The global iterative filtering and re-sampling module consists of a global loop, where
after initializing all ranked lists L∗θ to ∅ and P [θ | xA = ∅] to the prior distribution over
the hidden states, it iteratively performs the following sequences of operations: First,
for each hidden state θ, it calls Algorithm 2 to generate enough hypotheses so that L∗θ
covers at least (1− η) of its current mass, i.e., Z(L∗θ | θ, xA) ≥ 1− η (line 3). L∗θ might
not be initially empty due to a previous call to Algorithm 2. In this case, the generator
produces only new additional hypotheses starting from the frontier Fθ until the desired
coverage is achieved. This step is not necessary for the θ’s that are inconsistent with
xA, i.e., for those hidden states whose posterior distribution given xA is zero.

By construction, once we merge the hypotheses associated with each hidden state
(line 4), the sample set H̃ covers at least (1 − η) fraction of the total mass that
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is consistent with all the observations up to xA: Z(H̃ | xA) = ∑h∈H̃P [h | xA] ≥
∑θ ∑h∈L∗θ

P [h | θ, xA]P [θ | xA] ≥ ∑θ(1− η)P [θ | xA] = 1− η. The procedure is then
followed by performing EC2 (or any other submodular surrogates-based greedy algo-
rithm) on H̃ to identify the next test to be performed (see Fig. 4.11).

4.4.3 Theoretical Analysis

With initial Samples Only. Assume that we only sample the hypotheses once at the
beginning of each experiment, i.e., we do not resample the hypotheses after observing
the outcome of a test. If the underlying true hypothesis is included in the sampled
set H̃, then by construction Algorithm 3 is guaranteed to make the optimal decision.
Otherwise, with small probability it fails to output the optimal decision. Theorem 4.15
states a tradeoff between the size of H̃ and the expected cost of Algorithm 3.

Theorem 4.15. Suppose we have generated hypotheses H̃ with coverage 1− η. Define p̃min =

minh∈H̃
P[h]
1−η . Let π

g
H̃ be the policy induced by Algorithm 3, π∗H be the optimal policy on the

original distribution of H, and c(T ) be the cost of performing all tests. Then, it holds that

costavg (π
g
H̃) ≤ (r ln (1/ p̃min) + 1) costavg(π

∗
H) + η · c(T ).

Moreover, if we stop running π
g
H̃ once it cuts all edges on H̃, then with probability at least

1− η, π
g
H̃ outputs the optimal decision with

costwc (π
g
H̃) ≤ (r ln(1/ p̃min) + 1) costwc(π

∗
H).

Hereby, r denotes the number of colors involved in the DiRECt subroutine of Algorithm 3.

We defer the proof to §A.2.3. Note that the expected cost is computed w.r.t. the original
hypothesis distribution P [H | H ∈ H]. Theorem 4.15 establishes a bound between the
cost of the greedy algorithm on the samples H̃, and the cost of the optimal algorithm on
the total population H. The quality of the bound depends on η, as well as the structure
of the problem (which determines p̃min). Running the greedy policy on a larger set of
samples leads to a lower failure rate, although p̃min might be significantly smaller for
small η. Further, with adaptive re-sampling we constantly maintain a 1− η coverage
on the posterior distribution over H. With similar reasoning, we can show that the
greedy policy with adaptively-resampled posteriors yields a lower failure rate than the
greedy policy which only samples the hypotheses once at the start of the session.
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With Resampling. We now consider the policy which greedily picks tests according
to the adaptively-sampled posterior distribution of H at each iteration.

Theorem 4.16. Let k, ` be positive integers2, f be the EC2 objective function, πH̃,[`] be the
greedy policy on H̃, and π∗H,[k] be the optimal policy that achieves the maximal expected utility
under budget k on H, and

F
(

πH̃,[`]

)
≥
(

1− e−`/k
)

F
(

π∗H,[k]

)
− kε

where ε = 2η

(
1−

(
1
k

)`)
, and F(π) , Eh∼P[H][ f (S(π, h))] denotes the expected utility of

running policy π w.r.t. the original distribution.

Note that the above result applies to the EC2 algorithm with adaptive-resampled posteri-
ors at each iteration. The additive term kε on the RHS is due to the incompleteness of
the samples provided by the sampling algorithm. The main intuition behind the proof
is that, due to the effect of resampling, the expected one-step gain of the greedy policy
πH̃,[`] on the sampled distribution suffers a small loss at each iteration, comparing to
the greedy algorithm on the true distribution. The loss will be accumulated after `

rounds, leading to a cumulative loss of up to kε in the lower bound.

We defer the proof of Theorem 4.16 to Section A.2.4. In the following, we show that
an additive term is necessary for the lower bound (i.e., we cannot remove the additive
term in the bound, and push it into the multiplicative term involving 1− e−`/k).

Suppose there are two root-causes θ1, θ2 and two tests with outcomes denoted by X1

and X2. Let η = 0.1. The conditional probabilities for the test outcomes are as follows:
P [X1 = 1 | θ1] = P [X1 = 1 | θ2] = 1, P [X2 = 1 | θ1] = 0.001, P [X2 = 1 | θ2] = 0. There
are only two hypotheses with non-zero probability, i.e., h1 = [1, 0] and h2 = [1, 1].
Under some utility assignment, h1 and h2 will be assigned to different decision regions.

However, the hypothesis enumeration algorithm will output only one hypothesis
h1 = [1, 0], since P [h1 | θ1] > 1− η and P [h2 | θ2] > 1− η. Assume that we further
add infinitely many “dummy tests”, i.e., for all v in this set, p(Xv = 1 | θ) = 0 for all
θ. Then the greedy algorithm will choose those tests with high probability, since the
gain for all tests over H̃ is 0; whereas a smarter algorithm will pick test X2, because
we can identify the target region (and hence obtain a positive gain) upon observing its
outcome.

2If we assume unit cost for all tests, then k, ` are the number of tests selected. Otherwise, with
non-uniform test costs, k, ` are the budget on the cost of selected items.
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4.5 ECED: Optimizing VoI in the Presence of Noise

In principle, we can convert any NVOI-NMU problem (Problem 4.1.2) into a DRD
problem (Problem 4.1.3) by enumerating hypotheses from the prior P [Θ, X1, . . . , Xt],
and solve it near-optimally under the submodular surrogate-based framework (e.g.,
by running DiRECt or HEC). Theorem 4.14 provides an upper bound on the cost
that πDiRECt takes to solve the DRD problem - which requires it to cut all the edges
(in at least one ECD problem instance) - against the optimal policy that does so. In
practice, due to the effect of noise, we may have to exhaust all the tests before we can
cut all the edges. Being “absolutely certain” about the target decision is clearly an
unrealistic goal for most applications. A natural question to ask is, how can we design
an algorithm which attains near-optimal performance, if we are not required to identify
the optimal decision with absolute certainty, but just to solve the DRD problem with
high confidence?

As discussed in §4.4, one way to address this problem is to run DiRECt on the sampled
hypotheses instead of the original distribution, which may lead to an early stop. Our
theoretical result (Theorem 4.15) bounds the cost of the sample-based algorithm against
the optimal algorithm that solves the DRD problem. However, a stronger baseline we
wish to compare to is the optimal policy that also solves the DRD with high confidence.
In this section, we investigate an approach alternative to the sampling-based method
and prove strong theoretical guarantees of this flavor.

4.5.1 The Noisy ECD Problem

For the sake of theoretical analysis, in this subsection, we focus on the equivalence class
determination (ECD) setting, where decision regions do not overlap. Concretely, we
assume that there are m possible root-causes and n possible decisions, and the value of
target decision Y depends on the root-cause Θ through a deterministically mapping
r : {θ1, . . . , θm} → {y1, . . . , yn} that gives Y = r(Θ). We further assume that tests have
binary outcomes, and each test incurs a unit cost.

To simplify notation, we use ψπ := S(π, xV ) ∈ 2V×X to denote a path seen by policy
π as is similarly done in §3.3.2 (recall its graphical representation in Fig. 3.4). We use
ψ` := S(π[`], xV ) ∈ 2V×X to denote a path seen by policy π if it has selected ` tests.
Once ψπ is observed, we obtain a new posterior on Θ (and consequently on Y). The
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best prediction one can thus make under the Bayesian setting is the MAP estimator ŷ
of Y, i.e., ŷ , arg maxy′∈Y P [Y = y′ | ψπ]. The error probability of predicting ŷ is

pMAP
err (ψπ) , P [ŷ 6= y | ψπ] = 1−max

y∈Y
P [y | ψπ] .

We call pMAP
err the prediction error of the MAP estimator. The expected prediction error

after running policy π is then defined as perr(π) , Eψπ

[
pMAP

err (ψπ)
]
.

Given some small tolerance δ ∈ [0, 1], we seek a policy with the minimal cost, such that
upon termination, the posterior puts at least 1− δ mass on the most likely target value
y in expectation. In other words, we require that the expected prediction error after
running the policy is at most δ. Denote such policy by OPT(δ). Formally, we seek

OPT(δ) ∈ arg min
π

cost(π), s.t. perr(π) ≤ δ. (4.5.1)

When δ = 0, Problem 4.5.1 reduces to the DRD problem (Problem 4.1.3). Therefore it is
a strict generalization of the later. In this section, we consider bounding the worst-case
cost, which is defined as costwc(π) , maxψπ |ψπ|, i.e., the maximum number of tests
performed by π over all possible paths it takes.

Remark 4.17. A natural approach to solving Problem 4.5.1 for δ ≥ 0 would be to pick
tests greedily maximizing the expected reduction in the error probability perr. This, in
fact, in the myopic VoI policy, if we define the utility of making decision y on root-cause
θ to be the 1/0 loss function, i.e., u(θ, y) = 1 {r(θ) = y}. As we have shown in §4.2.1,
posterior-based approaches (including this one) can perform arbitrarily badly for the
decision-making problem we consider. Therefore, we aim to optimize a surrogate
objective function which captures the effect of noise, while being amenable to greedy
optimization.

Remark 4.18. Note that there are different ways of defining “success” of a policy. Other
than bounding the prediction error as considered in Eq. (4.5.1), an alternative option is
to ensure that the excess error or regret of acting upon ψπ, compared to having observed
all the tests is not more than δ. While the regret-based success criterion might be an
sensible alternative criterion to consider, the prediction error criterion offers a natural
stopping condition for running a policy (as one can compute the pMAP

err (ψπ) purely
based on the posterior). Hence we focus on Problem 4.5.1 throughout this section.
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4.5.2 The ECED Algorithm

We now introduce ECED, a principled algorithm for solving the noisy ECD problem.
Different from the DiRECt and its “noisy” extension (§4.3, §4.4), ECED no longer
needs to explicitly enumerate hypotheses (i.e., possible outcomes of all tests). Instead, it
directly draws edges between root-causes that do not share a region, i.e., E , {(θ, θ′) :
r(θ) 6= r(θ′)}, and scores tests based on the weight of those edges.

ECED with Bayesian Updates on Edge Weights In general, test outcomes are not
necessarily deterministic given a root-cause, i.e., ∀θ, P [Xv | θ] ∈ [0, 1]. One can not
“cut away” a root-cause θ by observing xv, as long as P [Xv = xv | θ] > 0. In such
cases, a natural extension of the edge-cutting strategy will be – instead of cutting
off edges – to discount the edge weights through Bayesian updates: After observing
xv, we can discount the weight of an edge (θ, θ′), by multiplying the probabilities
of its incident root-causes with the likelihoods of the observation: w((θ, θ′) | xv) :=
P [θ]P [θ′] ·P [xv | θ]P [xv | θ′] = P [θ, xv] ·P [θ′, xv]. Here we choose not to normalize
the probabilities of θ, θ′ to their posterior probabilities. Otherwise, we can end up
having 0 gain in terms of edge weight reduction, even if we perform a very informative
test. This gives us a greedy policy that, at every iteration, picks the test that has the
maximal expected reduction in total edge weight. We call such policy EC2-Bayes.

Unfortunately, as we demonstrate later in §4.6, this seemingly promising update scheme
is not ideal for solving our problem: it tends to pick tests that are very noisy, which
do not help facilitate differentiation among different target values. Consider a simple
example as illustrated in Fig. 4.12. There are three root-causes distributed as P [θ1] =

0.2, P [θ2] = P [θ3] = 0.4, and two target values r(θ1) = r(θ2) = y1, r(θ3) = y2. We want
to evaluate two tests: (1) a purely noisy test v1, i.e., ∀θ, P [Xv1 = 1 | θ] = 0.5, and (2)
a noiseless test v2 with P [Xv2 = 1 | θ1] = 1 and P [Xv2 = 1 | θ2] = P [Xv2 = 1 | θ3] = 0.
One can easily verify that by running EC2-Bayes, one actually prefers v1 (with expected
reduction in edge weight 0.18, as opposed to 0.112 for v2).

The ECED Algorithm The example above hints us on an important principle of
designing proper objective functions for this task: as the noise rate increases, one must
take reasonable precautions when evaluating the informativeness of a test, such that
the undesired contribution by noise is accounted for. Suppose we have performed test

96



4.5. ECED: Optimizing VoI in the Presence of Noise

q1

q2 q3

v1 :

v2 :

Ry1 Ry2Mammals Birds

Figure 4.12: An illustrative example for EC2-Bayes and ECED. There are two tests, v1 is
very informative, as observing its outcome may immediately tell us which region is
correct (e.g., if Xv2 = “aquatic animals”, then we know the target is “mammal”). v2, on
the other hand, can be viewed as a “purely noisy” test, because knowing the gender
doesn’t change our belief on the root-causes. Hence, we want to design a criterion that
encourages picking v2.

v and observed xv. We call a root-cause θ to be “consistent” with observation xv, if xv

is the most likely outcome of Xv given θ (i.e., xv ∈ arg maxx P [Xv = x | θ]). Otherwise,
we say θ is inconsistent. Now, instead of discounting the weight of all root-causes by the
likelihoods P [Xv = xv | θ] (as EC2-Bayes does), we choose to discount the root-causes
by the likelihood ratio:

λθ,xv ,
P [Xv = xv | θ]

maxx′v P [Xv = x′v | θ]
.

Intuitively, this is because we want to “penalize” a root-cause (and hence the weight of
its incident edges), only if it is inconsistent with the observation (See Fig. 4.13). When xv

is consistent with root-cause θ, then λθ,xv = 1 and we do not discount θ; otherwise, if xv

is inconsistent with θ, we have λθ,xv < 1. When a test is not informative for root-cause
θ, i.e. P [Xv | θ] is uniform, then λθ,e = 1, so that it neutralizes the effect of such test in
terms of edge weight reduction.

Formally, given observations ψπ, we define the (basic) value of observing xv as the total
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[0,0,0]

[1,0,0]

[1,1,1]

[1,0,1]

[0,1,0]

(a) Initializing the ECD graph

[0,0,0]

[0,1,0]

[1,0,0]

[1,1,1]

[1,0,1]

(b) Observing X1 = 1.

Figure 4.13: Illustration of the equivalence class edge discounting algorithm. Hy-
potheses are represented in dots. The size of a dot is proportional to its probabilities.
Upon observing “inconsistent” outcomes, we discount the hypothesis accordingly and
consequently discount its incident edges.

amount of edge weight discounted:

δbs(xv | ψπ) , ∑
(θ,θ′)∈E

P [θ, ψπ]P
[
θ′, ψπ

]
· (1− λθ,xv λθ′,xv).

Further, we call test v to be non-informative, if its outcome does not affect the distribution
of Θ, i.e., ∀ θ, θ′ ∈ supp(Θ) and xv ∈ X , P [Xv = xv | θ] = P [Xv = xv | θ′]. Obviously,
performing a non-informative test does not reveal any useful information of Θ (and
hence Y). Therefore, we should augment our basic value function δbs, such that the
value of a non-informative test is 0. Following this principle, we define

δoffset(xv | ψπ) , ∑
(θ,θ′)∈E

P [θ, ψπ]P
[
θ′, ψπ

]
· (1−max

θ
λ2

θ,xv
),

as the offset value for observing outcome xv. It is easy to check that if test v is non-
informative, then it holds that δbs(xv | ψπ) − δoffset(xv | ψπ) = 0 for all xv ∈ X ;
otherwise δbs(xv | ψπ)− δoffset(xv | ψπ) ≥ 0. This motivates us to use the following
objective function:

∆ECED(v | ψπ) , Exv [δbs(xv | ψπ)− δoffset(xv | ψπ)] , (4.5.2)
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Algorithm 4: The Equivalence Class Edge Discounting (ECED) Algorithm

1 Input: [λθ,x]m×t (or Conditional Probabilities P [X | Θ]), Prior P [Θ], Mapping
r : supp(Θ)→ Y ;

begin
2 ψπ ← ∅;

foreach (θ, θ′) ∈ E do
3 wθ,θ′ ← P [θ]P [θ′];

end
while pMAP

err (ψπ) > δ do

4 v∗ ← arg maxv Exv

[
∑(θ,θ′)∈E wθ,θ′ ·

(
weight

discounted︷ ︸︸ ︷
1− λθ,xv λθ′,xv −

offset term︷ ︸︸ ︷
(1−maxθ′′ λ

2
θ′′,xv

)
)]

;

5 Observe xv∗ ; wθ,θ′ ← wθ,θ′ ·P [xv∗ | θ]P [xv∗ | θ′];
6 ψπ ← ψπ ∪ {(v∗, xv∗)};

end
7 Output: y∗ = arg maxy P [y | ψπ].

end

as the expected amount of edge weight that is effectively reduced by performing test
v. We call the algorithm that greedily maximizes ∆ECED the Equivalence Class Edge
Discounting (ECED) algorithm and present the pseudocode in Algorithm 4.

4.5.3 Theoretical Analysis

Upper bounds on the worst-case cost Similar with EC2, both the computation com-
plexity (i.e., the running time) and the query complexity (i.e., the number of tests needed)
of ECED depends on the number of root-causes. Let εθ,v , 1−maxx P [Xv = x | θ]

be the noise rate for test v. As our main theoretical result, we show that under the
basic setting where test outcomes are binary, and the test noise is independent of the
underlying root-causes (i.e., ∀θ ∈ supp(Θ), εθ,v ≡ εv), ECED is competitive with the
optimal policy that achieves a lower error probability for Problem (4.1.3):

Theorem 4.19. Fix δ ∈ (0, 1). To achieve expected error probability less than δ, it suf-

fices to run ECED for O
(

k
cε

(
log km

δ log m
δ

)2
)

steps where m , | supp(Θ)| denotes the

number of root-causes, cε , minv∈V (1− 2εv)2 characterizes the severity of noise, and k ,
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costwc (OPT(δopt)) is the worst-case cost of the optimal policy that achieves expected error

probability δopt , O
(

δ

(log m·log(1/δ))2

)
.

Note that a pessimistic upper bound for k is the total number of tests t, and hence the
cost of ECED is at most O

(
(log(tm/δ) log(m/δ))2 /cε

)
times the worst-case cost of the

optimal algorithm, which achieves a lower error probability O
(
δ/(log m · log(1/δ))2).

Further, as one can observe, the upper bound on the cost of ECED degrades as we
increase the maximal noise rate of the tests. When cε = 1, we have εv = 0 for all test v,
and ECED reduces to the EC2 algorithm. Theorem 4.19 implies that running EC2 for

O
(

k
(

log km
δ log m

δ

)2
)

in the noise-free setting is sufficient to achieve perr ≤ δ. Finally,

notice that by construction ECED never selects any non-informative test. Therefore, we
can always remove purely noisy tests (i.e., {v : ∀θ, P [Xv = 1 | θ] = P [Xv = 0 | θ] =

1/2}), so that cε > 0, and the upper bound in Theorem 4.19 becomes non-trivial.

Information-theoretic Auxiliary Function We now present the main idea behind
the proof of Theorem 4.19. In general, an effective way to relate the performance
(measured in terms of the gain in the target objective function) of the greedy policy
to the optimal policy is by showing that, the one-step gain of the greedy policy always
makes effective progress towards approaching the cumulative gain of OPT over k steps.
One powerful tool facilitating this is the adaptive submodularity theory, which imposes
a lower bound on the one-step greedy gain against the optimal policy, given that the
objective function in consideration exhibits a natural diminishing returns condition.
Unfortunately, in our context, the target function to optimize, i.e., the expected error
probability of a policy, does not satisfy adaptive submodularity. Furthermore, it is
nontrivial to understand how one can directly relate the two objectives: the ECED
objective of Eq. (4.5.2), which we utilize for selecting informative tests, and the gain in
the reduction of error probability, which we use for evaluating a policy.

We circumvent such problems by introducing surrogate functions, as a proxy to connect
the ECED objective ∆ECED with the expected reduction in error probability perr. Ideally,
we aim to find some auxiliary objective, denoted by faux, such that the tests with
the maximal ∆ECED also have a high gain in faux; meanwhile, faux should also be
comparable with the error probability perr, such that minimizing faux itself is sufficient
for achieving low error probability.
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We consider the function faux : 2V×X → R≥0, defined as

faux(ψ) = ∑
(θ,θ′)∈E

P [θ | ψ]P
[
θ′ | ψ

]
· log

1
P [θ | ψ]P [θ′ | ψ]

+ c ∑
y∈Y

H2 (P [y | ψ]) .

(4.5.3)

Here H2 (x) := −x log x− (1− x) log(1− x), and c is a constant that will be made con-
crete shortly (in Lemma 4.21). Interestingly, we show that function faux is intrinsically
linked to the error probability:

Lemma 4.20. We consider the auxiliary function defined in Equation (4.5.3). Let m ,

| supp(Θ)| be the number of root-causes, and pMAP
err (ψ) be the error probability given par-

tial realization ψ. Then

2c · pMAP
err (ψ) ≤ faux(ψ) ≤ (3c + 4) ·

(
H2

(
pMAP

err (ψ)
)
+ pMAP

err (ψ) log m
)

.

We defer the poof of Lemma 4.20 to §A.2.6. The above result indicates that, if we
can show that by running ECED, we can effectively reduce faux, i.e., the one-step
gain in faux is significant in comparison with the gain of the optimal policy, then by
Lemma 4.20, we can conclude that ECED also makes significant progress in reducing
the error probability pMAP

err .

Bounding the Gain w.r.t. the Auxiliary Function It remains to understand how
ECED interacts with faux. For any test v, we define

∆aux(v | ψ) , Exv [ faux(ψ ∪ {v, xv})− faux(ψ) | ψ]

to be the expected gain of test v in faux. Let ∆EC2,ψ(v) denote the gain of test v in
the EC2 objective, assuming that the edge weights are configured according to the
posterior distribution P [Θ | ψ]. Similarly, let ∆ECED,ψ(v) denote the ECED gain, if the
edge weights are configured according to P [Θ | ψ]. In §A.2.7 we prove the following
result:

Lemma 4.21. Let m = | supp(Θ)|, n = |Y|, and ε be the noise rate associated with test e ∈
V . Fix η ∈ (0, 1). We consider faux as defined in Equation (4.5.3), with c = 8

(
log(2m2/η)

)2.
It holds that

∆aux(v | ψ) + cη,ε ≥ ∆ECED,ψ(v) · (1− ε)2/16 = cε∆EC2,ψ(v) ,

where cη,ε = 2n(1− 2ε)2η, and cε , (1− 2ε)2/16.

Lemma 4.21 indicates that the test being selected by ECED can effectively reduce faux.
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Lifting the Adaptive Submodularity Framework Recall that our general strategy is
to bound the one step gain in faux against the gain of an optimal policy. To do so,
we need to show that our surrogate exhibits, to some extent, the diminishing returns
property. By Lemma 4.21 we can relate ∆aux(Xv | ψπ), i.e., the gain in faux under the
noisy setting, to ∆EC2,ψ(Xv), i.e., the expected weight of edges cut by the EC2 algorithm.
Since fEC2 is adaptive submodular, this allows us to lift the adaptive submodularity
framework into the analysis. As a result, we can now relate the 1-step gain w.r.t. faux

of a test selected by ECED, to the cumulative gain w.r.t. fEC2 of an optimal policy in the
noise-free setting. Further, observe that the EC2 objective at ψ satisfies:

fEC2,ψ := ∑
y

P [y | ψ] (1−P [y | ψ])
(a)
≥ 1−max

y
P [y | ψ] = pMAP

err (ψ). (4.5.4)

Hereby, step (a) is because the error probability of a MAP estimator always lower
bounds that of a stochastic estimator (which is drawn randomly according to the
posterior distribution of Y).

Suppose we want to compare ECED against an optimal policy OPT. By adaptive
submodularity, we can relate the 1-step gain of ECED in fEC2,ψ to the cumulative gain
of OPT. Combining Equation (4.5.4) with Lemma 4.20 and Lemma 4.21, we can bound
the 1-step gain in faux of ECED against the k-step gain of OPT, and consequently bound
the cost of ECED against OPT for Problem 4.5.1. We defer a more detailed proof outline
to §A.2.5 and provide the full proof in detail in §A.2.9.

4.6 Experimental Results

In this section, we evaluate our algorithms on four sequential decision-making tasks,
including

1. a Bayesian experimental design task intended to distinguish among economic
theories of how people make risky decisions,

2. an active preference learning task via pairwise comparisons,

3. an adaptive troubleshooting task for mobile devices, and

4. an active touch-based localization task for robotic manipulation.

Table 4.2 summarizes how these problem instances fit into our framework.
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Application Test root-cause Decision

Pref. learning movie pairs favorable movie e.g., genre

Behavior economics lottery pairs parameterized theory valuation theory

Troubleshooting symptoms cause of problem diagnosis

Touch-based localization guarded move target location manipulation action

Table 4.2: Tests, root-causes, and decisions for different applications.

4.6.1 Overview of Experimental Setup and Baselines

Depending on the problem setup and the varying purposes of different tasks, we choose
different algorithms to evaluate. In particular, the first two applications are simulations,
and hence for these tasks, we can synthesize different experimental scenarios, and assess
all the (submodular surrogate-based) objectives (including GBS, EC2, HEC, DiRECt
and ECED) discussed in this chapter. The troubleshooting application involves real-
world diagnosis data collected from contact center agents, and we use it to showcase
the performance of our dynamic hypotheses enumeration framework. Finally, the
touch-based localization experiment is conducted on an actual robotic platform. We
run both simulation and real-world experiments to demonstrate both the efficiency and
effectiveness of the submodular surrogate-based objectives.

Baseline Approaches

The DRD setting. In applications where the set of hypotheses are given (e.g., touch-
based localization), we can directly run DiRECt without appealing to the sampling
technique discussed in §4.4. We evaluate DiRECt against several baseline approaches
for solving the DRD problem (Problem 4.1.3). The first baseline is the myopic decision-
theoretic value of information algorithm (which chooses tests according to Eq. (4.2.2)),
denoted as VoI. The second baseline is our recently proposed objective for addressing
the DRD problem, HEC (§4.2.2). We also compare with GBS and EC2. As discussed
earlier, these two approaches are designed for solving special cases of the DRD problem.
Assuming test outcomes are deterministic functions of hypotheses, the choices of
tests by GBS and the most informative selection policy (which greedily picks the tests
that are most informative about H) are in fact the same, assuming ties are broken
in a deterministic way. This maximal informative selection policy is also known as
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uncertainty sampling in active learning. When hypotheses are in multiple decision
regions, EC2 cannot be used as is. Hence, to run EC2 we choose to randomly assign
each hypothesis to one of the decision regions that it is contained in. For both GBS
and EC2 we use same stopping criteria as the DiRECt algorithm, i.e., we stop once one
decision region contains all the consistent hypothesis.

The Noisy ECD setting. Under the noisy ECD setting, the hypotheses are not explic-
itly given, and we only have access to the prior distribution over the root-causes and
test outcomes P [Θ, X1, . . . , Xt]. We consider running ECED, and evaluate it against the
following baselines. The first one is EC2-Bayes (as described in §4.5.2), which uses the
Bayes’ rule to update the edge weights when computing the gain of a test. Note that
after observing the outcome of a test, both ECED and EC2-Bayes update the posteriors
on Θ and Y according to the Bayes’ rule; the only difference is that they use different
strategies when selecting a test. Also, we compare with two commonly used sequential
information gathering policies: Information Gain (IG), and Uncertainty Sampling (US),
which consider picking tests that greedily maximize the reduction of entropy over the
target variable Y, and root-causes Θ respectively. Last, we also consider the myopic
VoI policy (VoI), In our problems, VoI greedily picks the test maximizing the expected
reduction in prediction error in Y.

4.6.2 Preference Elicitation in Behavioral Economics

The goal of our first application is to identify the underlying valuation theories people
use when facing different choices of risky decisions, by sequentially asking test subject
to choose between the various decisions. Several theories have been proposed in
behavioral economics to explain how people make such decisions under and uncertainty.
To set up the experiments, we consider six theories of subjective valuation of risky
choices [Wak10; TK92; Sha64], namely, (1) expected utility with constant relative risk
aversion, (2) expected value, (3) prospect theory, (4) cumulative prospect theory, (5) weighted
moments, and (6) weighted standardized moments. Here, each theory corresponds to a
possible value of the target variable Y in the DRD problem. To construct the test
set V , we consider lotteries: a lottery L is a known distribution over payoffs (e.g.,
the monetary value gained or lost). Each test consists of a pair of lotteries, and the
outcome of the test is the choice made between the two by the test subject. root-cause
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Figure 4.14: Results for the experimental design task in behavioral economics.

Θ corresponds to a parameterized theory that predicts, for a given test, which lottery is
preferable. The goal, is to adaptively select a sequence of tests to present to a human
test subject to distinguish which of the six theories best explains the subject’s responses
(i.e., predicting the target variable Y).

Evaluating DiRECt. To generate decisions, root-causes and tests, we employ a similar
procedure as suggested in the Bayesian experimental design literature [Ray+12]: First,
we assume a uniform distribution over the 6 type of theories (i.e., decisions) Y. Then,
we instantiate each theory using a grid of parameters, and use these parameterized
theories as root-causes Θ. Parametrized theories of the same type are assigned with
the same prior probabilities and therefore we obtain a set of parameterized theories
with a non-uniform prior distribution.

We generated ∼ 16K pairs of lotteries as tests. Given root-cause θ and test v = (L1, L2),
one can compute the values of lottery L1 and lottery L2, denoted by u1 and u2. As-
suming test outcomes are noise-free, Xv is thus defined as Xv := 1 {u1 ≥ u2}. Clearly,
given a parameterized valuation theory θ, the outcome of a test is deterministic:
P [Xv | θ] ∈ {0, 1}. In other words, in the noise-free setting, each root-cause θ corre-
sponds to fixed realization of all tests xV , and hence corresponds to a hypothesis in the
DRD problem.

In our experiments, we allow a tolerance ε - that is, if one hypothesis differs from
another by at most ε, they are considered to be similar, and thus have the same set of
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optimal decisions. Here, by “difference” we mean the normalized edit distance between
two hypotheses: if there are t tests, then d(h1, h2) =

|{i: fi(h1) 6= fi(h2)}|
t . Hypotheses that

are at most ε apart are considered to share a decision region. Results for simulated
test outcomes with varying ε are shown in Figure 4.14a. As we can observe, when
varying ε, the query complexity (i.e., the number of queries needed to identify the target
region) of DiRECt is lower than all baselines in most of the scenarios. Due to the lack
of consideration of (overlapping) decision regions, both GBS and EC2 perform worse
than HEC and DiRECt. The performance of the myopic VoI policy is rather unstable.
As our theory suggests, such posterior based myopic selection policy can perform quite
badly.

Evaluating ECED. We further study the Noisy ECD setting, where the feedback on
test outcomes are considered to be noisy. To model noisy test outcomes, we consider
the Bradley-Terry-Luce (BTL) preference model [BT52], where the probability that root-
cause θ favors lottery L1 over lottery L2is defined as P [Xe = 1 | θ] = 1

1+exp(−λ·(u1−u2))
,

where λ controls the level of noise in the system. The BTL model has been widely for
pairwise data, e.g., [NOS12; Sha+15], etc. Intuitively, a user is more prone to error if the
utilities of a pair are close. For preference elicitation, imagine a pair of lotteries (L1, L2)

which is almost of equal value to the user, then her feedback on whether she favors L1

over L2 is very noisy.

In the Noisy ECD setting, we do not need to set the tolerance parameter ε. Rather, we
assign each parameterized theory to the decision region representing the corresponding
theory type and assume that we can tolerate some edges not being cut in the end
(because our goal is to identify the target theory with low error probability).

To compare different algorithms, we set a budget on the number of iterations allowed,
and plot the error probability as a function of the number of iterations. Fig. 4.14b
demonstrates the performance of ECED, with λ = 10. The average error probability
has been computed across 1000 random trials for all methods. We observe that ECED
and EC2-Bayes have similar behavior on this data set; however, the performance of
the uncertainty sampling algorithm (US) is much worse. This can be explained by the
nature of the data set: due to the way we assign the prior probability, the data set has a
more concentrated distribution over Θ, but not Y. Therefore, since tests only provide
indirect information about Y through Θ, what the uncertainty sampling scheme tries to
optimize is Θ. Hence it performs quite poorly.
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(a) Partitions (r = 12) (b) Assign each movie to 2 cluster centroids

Figure 4.15: A 2-d illustration of (overlapping) decision regions for MovieLens experi-
ments. Dots represent movies; cross markers represent cluster centroids, and colored
polygons represent decision region boundaries. (a) Movies are partitioned into 12
disjoint clusters. (b) Each movie is assigned to the two closest centroids.

4.6.3 Preference Learning via Pairwise Comparisons

Our second application concerns a comparison-based movie recommendation system,
which learns a user’s movie preference (e.g., the favorable genre) by sequentially
showing her pairs of candidate movies, and letting her choose which one she prefers.

Constructing decision regions We use the MovieLens 100k dataset [Her+99], which
consists a matrix of 1 to 5 ratings of 1682 movies from 943 users. To measure the
similarity of candidate movies, we extract movie features by computing a low-rank
approximation of the user/rating matrix of the MoiveLens 100k dataset through singular
value decomposition (SVD). Specifically, we extract a 10-dimensional feature vector for
each movie. We then use k-means to partition the set of movies into r (non-overlapping)
clusters in the Euclidean space, which simulate the decision regions. We choose the
k-means cluster centers as the centroids representing the “categories” that a user may be
interested in. Since one movie can usually belong to several categories, we assign each
movie to the category that is represented by the closest centroids, giving us overlapped
decision regions. See Fig. 4.15 for an illustration.

Generating tests. Tests are given in the form of movie pairs. There is a total number
of ≈1.4 million pairs of movies in the MoiveLens 100k dataset. Usually, to distinguish a
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Figure 4.16: Results for the active preference learning application.

movie from the rest of the pool, we don’t need to perform all the tests. Rather, we want
to extract a subset of tests from all the available tests, such that by performing this subset
of tests, one can uniquely distinguish all the movies in our pool. To select this subset,
we first build a binary matrix A = {ai,j}1682×1682 of size 1682× 1682, representing all
pairs of movies to be distinguished. If performing a test v can distinguish a pair of
target movies indexed by(i, j) (meaning that by performing the test, one can tell which
one of (i, j) is more favorable), then we fill the entry ai,j = 1, indicating that we can
distinguish i from j by performing this test. Therefore, we start from an empty set T of
tests and keep adding tests (following some random order) into the T till the matrix A
is filled up. This amounts to a total number ≈ 100 tests, with which we can uniquely
identify any of the 1682 movies.

Evaluating DiRECt. Under the DRD setting, each movie corresponds to a hypothesis.
After receiving feedback from a test, we remove the movies that we believe do not
reflect user’s interest (e.g., movies that are more similar to the one that the user chooses
to dislike). Once all the remaining movies in our pool are in the same category (i.e.,
decision region), we can recommend any of the movies to the user. Our goal is to identify
such a category by asking as few pair-wise comparison questions as possible.

We demonstrate the performance of DiRECt on MovieLens in Figure 4.17. We fix the
number of clusters (i.e., decision regions) to 12, and vary r, the number of assigned
regions for each hypothesis, from 1 to 6. Note that r controls the hyperedge cardinality
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Figure 4.17: Results for ECED on MovienLens.

in HEC, which crucially affects the computational complexity. As we can observe, the
query complexity (i.e., the number of queries needed to identify the target region) of
DiRECt is lower than all baselines except HEC. However, it is significantly faster to
compute. See Figure 4.16b (for r = 5, HEC failed to pick any tests within an hour, and
eventually ran into memory issue when we continued running the experiment).

Evaluating ECED. Under the Noisy ECD setting, we make an (perhaps overly simpli-
fied) assumption that each movie only belongs to one category (i.e., r = 1). As with the
previous application, we assume that test outcomes are noisy, and we model the noise
with the BTL model: for a given test v = (ma, mb) and root-cause (i.e., favorite movie)
θ, we assume P [Xv = 1 | θ] = 1

1+exp(−λ·(d(ma,θ)−d(mb,θ))) . Hereby, d(·, ·) is the distance
function, and λ controls the noise level: larger λ corresponds to a steeper sigmoid
function (and hence low noise).

Fig. 4.17a shows the performance of ECED compared other baseline methods when we
fix the size of Y to be 20 and λ to be 10. We compute the average error probability across
1000 random trials for all methods. We can see that ECED consistently outperforms
all other baselines. Interestingly, EC2-Bayes performs poorly on this data set. This
may be because the noise level is still high, misguiding the two heuristics to select
noisy, uninformative tests. Fig. 4.17b shows the performance of ECED as we vary λ.
When λ = 100, the tests become close to deterministic given a root-cause, and ECED
can achieve 0 error with ∼ 12 tests. As we increase the noise rate (i.e., decrease λ), it
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takes ECED many more queries for the prediction error to converge. This is because,
with high noise rate, ECED discounts the root-causes more uniformly. Hence they are
hardly informative in Y. This comes at the cost of performing more tests, and hence
low convergence rate.

4.6.4 Interactive Troubleshooting

We further examine the submodular-surrogate based framework on a real-world inter-
active troubleshooting platform. Our data is collected from contact center agents and
knowledge workers who solve complex troubleshooting problems for mobile devices.
These training data involve around 1100 root-causes (the possible values of the root-
cause Θ) and 950 tests (questions on symptoms customers may encounter) with binary
outcomes. From the training data, we derived a joint distribution over [X1, . . . , Xt] and
Θ as P [x1, . . . , xt, θ] = P[θ]∏n

i=1 P [xi | θ], where P[θ] is the prior distribution over the
root-causes, which we assume to be uniform.

We simulated over 10,000 test scenarios (10 scenarios for each θ), where a customer
enters the system with an initial symptom xv0 (i.e. a test outcome), according to
probability P [xv0 | θ]. Each scenario corresponds a to a root-cause θ and an underlying
hypothesis h. The number of decisions is the number of root-causes (which correspond
to making a diagnosis), plus one extra decision of “give-up”. Intuitively, if two root-
causes result in the same outcomes for all tests, then the virtual agent cannot decide
which one is the true root-cause and therefore will forward such case to a human
agent, corresponding to the “give-up” decision. In practice, introducing such “give-up”
decision guarantees that there are no overlaps between decision regions. The utility
function u(θ, y) corresponds to the cost of misprediction (i.e., the cost of mispredicting
a root-cause, or the cost of “give-up”), which is specified by the business domain expert
as

u(θ, y) =





0, if y is “give-up”;

1, if y matches θ, i.e., y is the correct decision

−19, if y ∈ supp(Θ) ∧ y 6= θ, i.e., y corresponds to a wrong root-cause

In this way, the “give-up” decision is optimal when the posterior distribution over Y
given all test outcomes have no “peak” value higher than 95%.
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Figure 4.18: Results: Interactive troubleshooting.

0 20 40 60 80
Number of iterations

0.6

0.7

0.8

0.9

1

Po
st

er
io

r 
en

tr
op

y

IG VoIEC2

US

Figure 4.19: Posterior entropy.

We compared four algorithms: EC2, myopic
Value of Information (VoI), Information Gain
(IG), and Uncertainty Sampling (US). Fig. 4.19
shows the expected entropy on Θ while in-
creasing the test budget. Clearly, myopic VoI
performs comparably worse than others. In
Fig. 4.18, we report the average queries complex-
ity (i.e., the expected number of tests required to
solve a case), and the average utility of making
decisions while varying the maximal number
of samples allowed for each root-cause. We see that as we sample hypotheses more
extensively, all algorithms require more tests to make a decision; on the other hand, the
quality of decisions also increases with more samples. This behavior is reasonable since
having too few samples excludes a lot of good candidates which in turn leads to poor
utility. Moreover, there is a ∼16% improvement in the average query complexity when
using the EC2 algorithm. This shows a clear advantage of using submodular surrogates
for this kind of sequential problem: EC2 by construction is “less myopic”.

4.6.5 Active Touch-based localization

Our fourth application is a robotic manipulation task of pushing a button, with un-
certainty over the target’s pose (See Fig. 4.20). Tests consist of guarded moves [WG75],
where the end effector moves along a path until contact is sensed. Those hypotheses
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which would not have produced contact at that location (e.g., they are far away) can be
eliminated. Decisions correspond to putting the end effector at a particular location
and moving forward. The coinciding decision region consists of all object poses where
the button would successfully be pushed. Our goal is to concentrate all consistent
hypotheses within a single decision region using the fewest tests.

(a) Hypotheses (b) Tests (c) Decision regions

Figure 4.20: Experimental setup for touch-based localization. (a) Uncertainty is rep-
resented by hypotheses over object pose. (b) Tests are guarded moves, where the end
effector moves along a path until contact is sensed. Hypotheses which could not have
produced contact at that location (e.g. they are too far or too close) are removed. (c)
Decisions are button-push attempts: trajectories starting at a particular location, and
moving forward. The corresponding region consists of all poses for which that button
push would succeed.

Generating root-causes / hypotheses. To model the pose uncertainty of the target
object, we use four parameters: (x, y, z) for positional uncertainty, and ν for rotation
about the z axis. An initial set of 20000 hypotheses are sampled from a normal
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Figure 4.21: Results: Touch-based localization.

distribution N(µ, Σ), where µ is some initial location (e.g., from a camera), and Σ is
diagonal with σx = σy = σz = 2.5cm, and σν = 7.5◦.

We run DiRECt on both simulated data and a real robot platform. When running
on a real robot, many actions are infeasible due to kinematic constraints. In the first
simulated experiment, we fix the set of guarded moves |V| = 250, and evaluate the
algorithms by varying the number of randomly sampled decisions |Y|. Sampling
decisions enables us to generate arbitrarily many, ensuring we always have many
decisions available. To compute the myopic (VoI), we define a utility function u(h,R)
which is 1 if h ∈ R and 0 otherwise. Results are plotted in Fig. 4.21a. We see that
DiRECt generally outperforms other baselines. Here, myopic VoI performs comparably
– likely because the problem is solved within a short horizon.

For the results shown in Fig. 4.21a, it’s prohibitive to run HEC, because the overlap
between regions is large. We also want to compare DiRECt with HEC on problem
instances where HEC can practically run. To ensure that, we pre-select a grid of
25 button pushing actions Y while ensuring the overlap is minimal, so that the HEC
objective can be computed in a reasonable time. Note that to run DiRECt, we don’t need
to enforce such strict constraints. We randomly generate guarded moves V to select
from. In Fig. 4.21b we show the number of test guarded moves needed for different
algorithms, when varying |V|. As we can observe from the results, DiRECt performs
essentially the same as HEC on this problem instance, while slightly outperforms VoI.
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Setting Submodular surrogates “Noisy” extension

ODT GBS MIS (§3.3.1)

O
(

log 1
pmin

)
O
(

log n
(1−2ε2)

)

ECD EC2 ECED (§4.5)

O
(

log 1
pmin

)
O
(
(log n/δ)3

(1−2ε2)

)

DRD HEC / DiRECt (§4.3)

O
(

log 1
pmin

) –

Table 4.3: Summary of results for NVOI-NMU. Our results are highlighted in bold. For
the results displayed under the “noisy” extension, we assume binary test outcomes
with independent flips of the label and compare with the “optimal” policies under
some stronger stopping condition.

4.7 Summary

In this chapter, we studied practical and efficient approaches for optimizing value of
information. We described a class of algorithms which rely on adaptive submodular
surrogates and proved strong theoretical guarantees. We presented DiRECt and proved
its objective function to be adaptive submodular, making it amenable for efficient
greedy optimization. To accommodate the computational issue that DiRECt could run
into in many real-world problems, we proposed a novel hypothesis sampling strategy
on top of the DiRECt framework and showed that it compensated the inefficiency
of the popular submodular surrogates-based greedy algorithms, while still enjoying
provable theoretical guarantees. We demonstrated the effectiveness of our (submod-
ular surrogate-based) algorithmic framework extensively on several applications. In
our applications, DiRECt compares favorably with existing approaches, while being
significantly faster than competing methods.

Despite the technical merit of the submodular surrogate-based methods, the bounds
for these algorithms can not handle general noise on the test outcomes. To this
end, we introduced ECED, which strictly generalizes the EC2 algorithm to the noisy
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setting (which we call the noisy ECD problem). We proved that ECED enjoyed strong
theoretical guarantees when comparing with an optimal policy achieving some lower
error probability. We also demonstrated the compelling performance of ECED on two
(noisy) problem instances.

Table 4.3 summarizes our theoretical results presented thus far. The analysis framework
presented in this chapter does not apply to the general problem which involves both
overlapping decision regions and noisy observations. However, in practice, one can
still run edge discounting algorithm similarly with ECED. We believe that our work
makes a major step towards building towards building practical and robust sequential
decision-making systems, and provides useful insight for understanding the theoretical
aspects of adaptive information acquisition algorithms in complex, noisy environments.
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5
Active Object Detection

In §4, we have demonstrated that it is useful to use adaptive submodular surrogates for
the broad class of Bayesian active learning and experimental design problems. Our key
idea was to reduce the non-submodular optimization problems (e.g., decision-theoretic
value of information) to submodular ones (e.g., DRD) by reformulating the problems.
This is somewhat similar to the idea of constructing convex surrogates in the statistical
learning literature. However, unlike their continuous analog, submodular surrogates
have been much less attended to in the literature. An immediate follow-up question
from the previous chapter is, can we generalize this idea, and construct adaptive
submodular surrogates for other sequential decision problems?

In this chapter, we present a novel application that goes beyond Bayesian active learning,
where adaptive submodular surrogate leads to promising performance. In particular,
we consider the object detection problem – a fundamental challenge in computer vision.
While a human expert is quite capable of recognizing visual objects in a scene, for
many practical tasks, a high-quality fully automatic detection system is still beyond our
reach. A major problem for automatic object detection is the lack of sufficient training
examples since manual annotations are usually time-consuming and expensive. To
illustrate this, let us consider the task of detecting orangutan nests in aerial photos, as
described below.

Example 5.1. Ecologists launch micro UAVs, “conservation drones” to take high-quality
photographs of orangutan habitat from above treetops, to obtain accurate and timely data on
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Figure 5.1: Orangutan nests detection for biodiversity monitoring (UAV-forest). (Left)
Conservation drone (image courtesy of conservationdrones.org). (Middle) An aerial
image captured by the conservation drone, with two orangutan nests highlighted.
(Right) The response image (in grayscale) generated by a base detector.

orangutan distribution in the surveyed area. On the one hand, frequently going through thou-
sands of those photographs to look for orangutan nests, is an extremely tedious and potentially
expensive task for human experts. On the other hand, an automatic detection system (e.g., the
rightmost figure in Figure 5.1) tends to produce many false positive detections in the high-
clutter background, given limited training samples obtained from the drone missions.

A natural step towards a sustainable and efficient object detection system is to introduce
human supervision along with the automatic detection process. In such settings, the
system and the user collaborate to obtain the best performance: first, the system
proposes candidate objects to the expert for verification, and then the expert provides
feedback to guide the system to generate better detections. To make the best use of the
scarce labeling resources, one needs to decide in which order to query the candidates,
such that the best possible performance could be achieved in exchange for the minimum
amount of user supervision.

Our contribution. Rather than developing novel object recognition algorithms, in this
chapter, we focus on techniques for intelligently interacting with humans. We assume
that we already have access to a base detector/ classifier that can produce a certain
response for target objects (c.f. Fig. 5.1), and the task is to apply the classifier to the
multiple object detection problem while having humans in the loop. We propose a
general framework for such active detection problems, which brings together the quality
of manual annotation and the scalability and speed of automatic detection, regardless
of what base detectors have been employed. We show how one can, from a given base
detector, derive a natural sequential decision problem. Further, its objective function
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is adaptive submodular, allowing us to employ the adaptive greedy optimization
framework, with strong theoretical guarantees. To demonstrate the effectiveness of
active detection, we carry out experiments on three different detection tasks using
different base object detectors and show that active detection does have substantial
advantages over its passive counterpart. To the best of our knowledge, our approach is
the first to rigorously address the active detection problem from both empirical and
theoretical perspectives.

Organization of this chapter. We formulate active detection as a sequential decision
making problem in §5.1. In §5.2, we present ActDet, a principled greedy detection
framework, and state the main theoretical results. In §5.3, we instantiate ActDet
for three different real-world active detection tasks and demonstrate its superior per-
formance over the passive approaches and some active baselines. We review the
background on object detection in §5.4 and summarize this chapter in §5.5.

5.1 Problem Statement

We start by introducing a simple Hough-based detection algorithm that motivates our
research. Then, we formalize the active detection problem in section 5.1.2.

5.1.1 Hough-based Approaches

Hough-based detection algorithms work by transforming the input image into a new
representation in a domain called the Hough space [Hou59; Bal81]. Each point in the
Hough space corresponds to a possible configuration of an object instance. We call
such configuration a candidate hypothesis, or “candidate” in short, to avoid confusion
with the usage of term “hypothesis” in §4.

The Hough image is built by aggregating the contributions of the individual voting
elements, taken from the image or some appropriate set of features of it. The detections
will then be identified as peaks in the Hough image, with the height of the peak as an
indicator of the confidence in the detection. As an example, to detect lines in an image,
one can search through the peaks in the 2-d Hough space (with each axis corresponding
to one parameter of the line function), and find a subset of line parameters that have
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y = a · x + b

x

y

(a) Original image

b = �x · a + y

a

b

(b) Hough image

Figure 5.2: Illustration of a hough-based line detector.

the highest accumulated votes (See Fig. 5.2 for an illustration). Similarly, to detect
natural objects, one needs to create individual voting elements that vote for a certain
configuration of the whole object.

5.1.2 Active Detection as a Sequential Decision Problem

We can generalize the idea of voting elements and candidates for general object detection
problems. To align our notations with previous chapters, we use V = {1, . . . , t}
to denote the set of candidates, where each candidate v ∈ V represents a possible
configuration (e.g., location, aspect ratio, size, etc.) of the target object. Later on, we
will see that the candidate set V corresponds to the set of tests in the adaptive greedy
optimization framework discussed in §2.3.

We use X1, . . . , Xt ∈ X = {+1,−1} to denote the (initially unknown) labels of the
candidates, such that Xv = +1 if candidates v is true (i.e., there exists an object
at location zv), and Xv = −1 otherwise. We use XV = {X1, . . . , Xt} to refer to the
collection of all variables. Whenever a candidate v is selected, the corresponding
variable xv is revealed. Similarly, if we select a set of candidates A, the corresponding
observations are represented as xA ⊂ V ×X .

We further assume a finite set of voting elements, denoted as Σ. We refer to Σ as the
evidence set. Each item σ ∈ Σ corresponds to a voting element that can cast votes for a
set of candidates. A base object detector proposes a voting scheme that connects the
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1 2 3 4 5 6 7 8

1 2 3 4

(a) Binary votes

Figure 5.3: The voting scheme proposed by a base object detector as a bipartite graph.
“Similar” edges share the same color.

the evidence set Σ and the candidate set V . The interaction between voting elements
and candidates can be formally represented as a bipartite graph G(Σ,V , E); each edge
(σ, v) ∈ E is assigned a score (e.g., confidence, probability estimation given by the base
object detector) with which σ votes for candidate v. We will give concrete examples in
§5.3.

Active Detection as a Sequential Decision Problem We consider a sequential strat-
egy, where the detector proposes a candidate v ∈ V , and receives a label xv from
the expert. Whenever a label is revealed, we update the underlying bipartite graph,
which represents the current state of the base detector. In particular, we perform the
updates by only reducing the weights associated with the voting elements (i.e., covering
the edges in G), as observations will keep explaining the votes proposed by the base
detector. Our goal, therefore, is to propose a strategy that can cover the entire set of
edges as soon as possible.

5.2 The Active Detection Framework

We begin with the case where the votes generated by the base detector only consist
of “yes” or “no” answers and then generalize to the setting with real-valued votes.
In §5.2.3, we provide an efficient greedy solution to the active detection problem and
present our main results.
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5.2.1 Binary Votes Setting

We first study a simple case, where the voting elements can only cast binary votes (i.e.,
0/1) for the presence of an object with candidate configuration/location encoded by
v ∈ V .

Suppose the active learner proposes a candidate, and receives a positive label from an
external expert. Denote this candidate by candidate+. Since a voting element has equal
confidence in all its supporting candidates, the true candidate then thoroughly explains
the voting elements σ ∈ Σ that voted for v, thereby “covering” all votes associated with
σ. We refer to the amount of edges covered by selecting v+ with positive feedback as
the positive coverage of v+.

A more interesting case is when the active detector makes a false prediction. Let the
negative coverage be the reduction of edge weights in G incurred by a false detection,
denoted by v− ∈ V . The construction of negative coverage is akin to that of positive
coverage, but with substantial difference: while in the positive case we cover the edges
which are neighboring the edges that directly vote for v+ (i.e., stemming from the same
voting elements), in the negative case we will reduce the weight of all edges that are
similar to the ones pointing to the false candidate v−. Concretely, we assume that the
votes generated by the base detector are associated with some features, and thereby can
be clustered accordingly. The clustering associated with the base detector is denoted
using a function cls : Σ×V → Z+, which maps an edge (σ, v) ∈ E to its cluster index.
A false detection thereby “explains away” (covers) similar votes that share the same
clusters with the potentially false vote(s). See Figure 5.4 for an illustration.

Formally, the fraction of an edge (σ, v) ∈ E being covered due to negative observations,
could be modeled as a monotone increasing function g : E × 2V×X → [0, 1]. In
particular, we express it as a concave function q of the number of negative supports
observed:

g(σ, v, xA) = q(nneg(σ, v, xA))

where nneg(σ, v, xA) ≡ |{(v′,−1) ∈ xA : ∃σ′, cls(σ′, v′) = cls(σ, v)}| is the number of
false candidates that are being voted for by any edge in the same cluster as (σ, v).
In general, we want q(0) = 0 and limn′→∞ q(n′) = 1. An extreme choice would be
q(n′) = min(n′, 1): the edge is fully covered as soon as it is in the same cluster of a
vote for a negative candidate. A less aggressive choice of the concave function, which
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we adopt in our experiments, is:

q(n′) = 1− γn′ . (5.2.1)

The negative discount factor γ controls the speed with which the weights will be
discounted. If γ = 0, all the edges in the cluster c will be fully discounted once one of
them votes for a negative candidate; if γ = 1, the edges will never be discounted.

Now we are ready to construct the coverage function f (1)σ,v : 2V×X → R≥0 for any
edge (σ, v) ∈ E , in the binary votes setting. Given a set of candidates A ⊆ V , and
corresponding observations xA ⊆ V ×X , the amount by which a given edge (σ, v) is
covered is defined as

f (1)σ,v (xA) = max





1, if ∃v′ : (v′,+) ∈ xA ∧ (σ, v′) ∈ E ;

g(σ, v, xA), otherwise.
(5.2.2)

5.2.2 The General Case with Real-value Votes

The previous approach is limited, in a way that it only allows us to describe the support
given by a voting element to a candidate as a binary relation. In realistic settings,
we would like to take the strength of confidence into account, i.e., each edge (σ, v)
is associated with a weight wσ,v ∈ R≥0. For this more general scenario, we need to
redefine “coverage”, by allowing edges to be partially covered. Following the previous
example, when an edge (σ, v) is covered due to positive observation, it will also cover
its neighbors in a magnitude that is at most its weight wσ,v. Since we do not allow
negative weights, if a neighbor edge (σ, v′) has a weight wσ,v′ < wσ,v, then it is fully
covered. Thus, an edge (σ, v) covers another edge (σ, v′) in a magnitude given by
min(wσ,v, wσ,v′).

Taking negative coverage into account, the coverage function for an edge is defined as:

fσ,v(xA) = g(σ, v, xA) · wσ,v

+ min
{

max
v′ :(v′,+1)∈xA

wσ,v′ , (1− g(σ, v, xA)) · wσ,v

}
(5.2.3)

We can interpret the first term on the RHS as the fraction of weight covered due to
negative observations, and the second term as the fraction of remaining weight (i.e.,
after negative discount) covered due to positive observations. Note that wσ,v′ does not
have a discount factor, since we know that the edge (σ, v′) represents the vote for a
positive candidate, and thus it should be fully covered.
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(a) Votes with real values
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(c) (Negative) edge coverage

Figure 5.4: (a) shows a bipartite graph with real-valued edge weight. (b) illustrates how
we should update the graph from a positive feedback: if candidate 2 is true, then all
the direct votes and their neighboring votes are (partially) covered; (c) illustrates how
we should update the graph from a negative feedback: if candidate 3 is false, then all
the “similar” edges as highlighted are (partially) covered.

Connection with the binary votes setting. We can see that the coverage function with
binary votes (Eq. (5.2.2)) is a special case of the general coverage function (Eq. (5.2.3)),
when all non-zero weights are set to 1: Assume the edge (σ, v) exists, i.e., wσ,v = 1.
If the maximum among the weights wσ,v′ of the first term is zero, then the first term
vanishes and we are left with g(σ, v, xA). Note that all the wσ,v′ being zero is equivalent
to the second case of Eq. (5.2.2). The only alternative is if the maximum of the wσ,v is 1.
Then, since 1− g ≤ 1, we have that fσ,v(xA) = (1− g) + g = 1.
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The objective function. Finally, we can define the objective function F : V ×X → R≥0

for the active detection problem, by summing up weights covered from all the edges in
E :

fDet(xA) = ∑
(σ,v)∈E

fσ,v(xA) (5.2.4)

The goal of active detection, therefore, is to adaptively select a minimum subset of
candidates, such that the edges in the underlying bipartite graph can be fully covered.

5.2.3 ActDet: A Greedy Solution

In this section, we show that the active detection problem defined in the previous
section is an adaptive submodular optimization problem, and thus can be efficiently
solved using a greedy algorithm. First, we show that the objective function (Eq. (5.2.4))
satisfies submodularity:

Lemma 5.2. fDet is monotone (point-wise) submodular.

The key idea of the proof is that we can decompose a voting element into many voting
elements, each casts equal votes to its favorable candidates. Then we just need to prove
F in the new evidence space to be submodular, which is straightforward. We defer the
proof details to §A.3.1.

In the active detection setting, we have no access to the label of a candidate in advance.
Hence, we are not able to select (candidate, label) pairs for each iteration. The following
result implies that our objective function also satisfies adaptive submodularity:

Lemma 5.3. fDet is adaptive submodular w.r.t. P [XV ] as long as X1, . . . , Xt are independent.

Proof. With a factorial distribution over the outcomes, the adaptive submodularity of F
follows immediately from Lemma 5.2 and Theorem 6.1 of [GK11b].

With the objective function defined in §6.1.2, we can associate the following greedy
algorithm: It starts with the empty set, and at each iteration adds to the current set A
the candidate v which maximizes the marginal improvement:

∆Det(v | xA) = ExV [ fDet(xA ∪ {(v, xv)})− fDet(xA) | xA] .
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Algorithm 5: ActDet: The active detection algorithm
Input: Bipartite graph G(Σ,V , E), prior P [xV ], discount factor γ, maximal

number of detections to be proposed N
Output: Detections (with associated labels) xA
begin

1 A ← ∅, xA ← ∅;
foreach i ∈ {1, . . . , N} do

foreach v in V do
2 ∆+(v)← ∑σ∈Σ ∑v′∈V min {wσ,v, wσ,v′};
3 ∆−(v)← ∑cls(σ′,v′)=cls(σ,v) {γ · wσ′,v′};

end
4 v∗ ← arg maxv {P [xv = +1]∆+(v) + P [xv = −1]∆−(v)};
5 Observe xv∗ ;

foreach edges (σ, v) ∈ E do
if xv∗ = +1 then

6 wσ,v ← max {wσ,v − wσ,v∗ , 0};
else

if cls(σ, v) = cls(σ, v∗) then
7 wσ,v ← γwσ,v;

end

end

end

end

end

Once the label of v is observed, we update the bipartite graph G with the remaining
edges that have not yet been explained by the current observations xA. Algorithm 5
provides the details of the greedy algorithm.

Following the analysis of Golovin and Krause [GK11b], we obtain the following perfor-
mance guarantee:

Corollary 5.4. Suppose fDet : V × X → R≥0 is defined as Eq. (5.2.4). Fix any value
Q > 0 and β > 0, and let costwc(π∗) be the worst-case cost of an optimal policy that
achieves a maximum coverage value of Q for any possible realization of the variables xV . Let
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costwc(π
g
ActDet) be the worst-case cost of Algorithm 5 using a factorial prior on variables

X1, . . . , Xt, until it achieves expected value Q− β. Then,

costwc(π
g
ActDet) ≤ costwc(π

∗)
(

ln
(

Q
β

)
+ 1
)

.

Moreover, it holds that under the algorithm’s prior: P [ f (xA) ≥ Q] ≥ 1− β.

Note that the above result provides guarantees even for worst-case realization of the
labels xV (i.e., without assumptions on P [xV ]), as long as our algorithm uses any
factorial prior. Further note that if we choose, in the extreme case, β = minxV P [xV ],
we guarantee that the greedy algorithm achieves full coverage (i.e., f (xA) ≥ Q) for
all realizations xV and xA � xV . If we do not have a strong prior, we can obtain the
strongest guarantees if we choose a distribution that is “as uniform as possible” (i.e.,
maximizes minxV P [xV ]), while still guaranteeing adaptive submodularity.

5.3 Experimental Results

In this section, we empirically evaluate our active detection approach on three (substan-
tially different) datasets: an orangutan nest detection task for biodiversity monitoring,
a pedestrian tracking task in a video sequence, and a standard object detection task for
the PASCAL VOC Challenge. For each dataset, we employ different base detector that is
most tailored to the task. Our emphasis is on comparing the active detection algorithm
with classical passive detection, as well as empirically quantifying the improvement by
the active detection framework over the base detectors.

5.3.1 Orangutan Nest Detection on UAV-recorded Forest Images

Dataset and experimental setup. The first application is an interactive orangutan
nests detection system for biodiversity monitoring. To estimate the distribution of criti-
cally endangered Sumatran orangutans (Pongo abelii), ecologists deploy conservation
drones above orangutan habitat in surveyed areas, so that they can obtain timely and
high-quality photographs of orangutan nests high in the tree canopies [KW12]. Our
test set contains 37 full-resolution (4000× 3000 pixels) images from two separate drone
missions launched in September 2012, in Sumatra, Indonesia. Each of the target images
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contains at least one orangutan nest, and there are a total number of 45 nests in the
dataset, with a minimum size of 19× 19 pixels. Selected examples of the nest and
non-nest image patches are shown in Fig. 5.5.

(a) Positive examples of orangutan nests

(b) Negative examples

Figure 5.5: Example image patches in the UAV-forest dataset.

As we can see from the above examples, the positive class has high intra-class variation.
For efficiency considerations, we reduce the resolution of the original images by half.
We then extract all 45 examples of orangutan nests of size 9× 9 pixels, as well as 148
background image patches, as the labeled set. Each training example is represented as
a 9-dimensional vector which consists of statistics (mean, maximum and minimum) of
three color channels in a patch. Based on these features, we train a linear discriminant
classifier (LDA) to classify orangutan nests vs. background.

Base detector. The base detector we employ is a sliding-window based system. As we
don’t have sufficient (positive) training data, we use all the labeled images other than
those in the current test image as the training set. At run time, each image patch located
by the current sliding window (of size 9× 9) is evaluated with a pre-trained classifier
and used as a voting element that casts equal votes to its surrounding area (i.e., 9× 9
pixels). The confidence of votes from theses voting windows are determined by their
distances to the classifier’s decision boundary; positive windows that are further away
from the decision boundary have higher confidence when voting for a nest candidate.

Clustering the votes. To cluster similar voting elements, we use k-means clustering
on the set of voting windows. Moreover, as negative detections often occur adjacently
(e.g., branches are usually connected), we also use a local clustering algorithm (i.e.,
segmenting nearby regions), to avoid overwhelming false detections. As an example,
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Figure 5.6: Results: Performance of the active detection on UAV-forest.

see the response image demonstrated at Fig. 5.1. Once we query some candidate at
the “Y” branch and get to know its label, we will either cover (when the detection is
true), or discount (when the detection is false) the weights for the entire local region.
In our experiments, we use mean-shift [CM02] for local clustering. We adaptive the
code from the EDISON [Lab02] system, and set the parameters as follows: a spatial
width hs = 25, a feature (range) width hr = 10, and a minimum region area M = 169.
We adjust the spatial width so as to avoid discounting too many regions by a single
observation while being able to maintain a relatively low computational cost.

Results. We study two stopping criteria to decide when to quit the detection process.
The first one, which is used to generate the results in Fig. 5.6, is to stop when the
marginal gain by selecting a candidate falls below some particular value. The second
choice is to stop when the accumulated coverage of the votes exceeds a certain fraction
of the total votes in the images. While the first one seems to be a practical choice,
the second is in direct connection with the adaptive minimum-cost coverage problem,
where one stops once the total utility exceeds a fixed quota. From Fig. 5.6, we can see
that active detection significantly outperforms the passive algorithm: At 80% recall,
active detection (γ = 0.5) obtains almost twice the precision (0.27 vs. 0.15) as the
passive algorithm.
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5.3.2 Pedestrian Detection on TUD-crossing Sequence

Base detector. Hough based approaches offer seamless integration with the active
detection framework. To demonstrate how user supervision can help with such systems,
we apply Algorithm 5 to the TUD-crossing sequence, based on the Hough Forest
detector proposed in by Gall and Lempitsky [GL09]. Essentially, they produce a set of
individual voting elements that are integrated to reason about the existence of a full
object. Concretely, a direct mapping between the appearance of an image patch and its
Hough votes is learned through a random forest framework, as illustrated in Fig. 5.7.
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(a) Input image
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Figure 5.7: Illustration of the Hough-forest detection algorithm.

Each tree in the forest is constructed based on a set of patches that are sampled from
the training collection of images (Fig. 5.7a), and each leaf node in the tree stores the
proportion of image patches that belong to an object, and their corresponding offset
vectors from the object centroid (Fig. 5.7b). At runtime, patches of the test image are fed
to the forest and passed through the branches of the Hough trees. Then the information
stored at the leaf nodes of the trees is used to cast probabilistic votes about the existence
of the object at some location (Fig. 5.7c, Fig. 5.7d).

Fig. 5.8 shows a frame from the sequence and its corresponding response image.

Clustering the edges. Other than the direct benefit of a ready-to-use voting scheme,
the Hough forest framework also provides a natural and intrinsic characterization of
the “similarity” of votes. If two image patches fall into the same leaf node, then by
default they are clustered together (see Fig. 5.7c). Therefore, when receiving negative
feedback from an external expert, the active detector can efficiently update the bipartite
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Figure 5.8: Pedestrian detection (TUD-crossing).

graph, by adjusting the weight (i.e., probabilities) of similar votes that share the same
leaves for all the trees in the forest. Note that we are clustering edges in the bipartite
graph, not voting elements. Therefore, the updates should be focused only on the
votes that are pointing to the same directions as the false votes. As an example, in
Fig. 5.7d, if the active detector proposes h2, and finds it to be a false detection, then we
will discount the weights for (1) the rightmost edge for voting element v5, and (2) the
leftmost edge for voting element v6. In other words, we just need to discount the two
corresponding edges in the blue cluster (Fig. 5.7c) – such that all blue voting elements
are updated.

We use a discount factor γ = 0.01 to penalize votes that are “similar” with any of
the incorrect votes. We also use “local clusters” to update the bipartite graph when
observing a false candidate, similar to the case for the nest detection task: edges that
share the same voting element are considered within the same local cluster, and thus
will be discounted if any of them points to a false candidate.

Since the background clutter doesn’t change much across frames, for active detection
we choose to share the cluster updates through the entire video sequence, rather than
discard the information acquired from user feedback and start from scratch (i.e., reset
the negative count for each cluster) for each new frame.

Matching bounding boxes. Once the set of candidate bounding boxes are proposed,
we need to match them with the ground truth bounding boxes for evaluation. Note
that greedy matching is problematic for datasets that exhibit sufficient overlap between
objects because once a detection is matched to one object, it cannot switch to another
object even if the second is a better matching. Instead, we apply Hungarian algorithm
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to match the set of detections with the ground truth annotations, based on the Jaccard
similarity (similarity ≤ 40% are considered as false detections) between bounding
boxes.
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Figure 5.12: Results: TUD-crossing.

Results. We compare active detection with the
state-of-the-art passive detection results on this
dataset, which is given by Barinova, Lempitsky,
and Kholi [BLK12a]. We test the candidate al-
gorithms on 41 frames of the TUD-crossing
sequence (by sampling every 5th frame of the
full video sequence) in the single scale scenario,
and show the results in Fig. 5.12. The curves are
generated by varying the stopping threshold on
the margin gains of new candidates. We limited
the maximum number of detections to be 10 for
both systems (given there are at most eight objects per frame) to have a fair comparison.
As can be seen, with user supervision, our framework considerably outperforms the
baseline detection algorithm.

Fig. 5.9, Fig. 5.10, and Fig. 5.11 demonstrate the dynamics of the active detection
process. The current detection is highlighted by cyan bounding box. Red bounding
boxes indicate the ground truth labels of pedestrians, and green bounding boxes are
the detections made by ActDet (Alg. 5). For illustration purpose, we only show the
bounding boxes of the true detections, and that of the current detection (regardless of
its label).

We start active detection from the 16th frame of the video sequence (Fig. 5.9a). Each
time we finish detecting one frame, we take the next frame that is 5 frames away from
the current one as input. That is, the sequence of test images are frame 16, 21, 26, 31,
36, 41, 46, 51, etc.

In Fig. 5.9, we show three detections made by the active detector. As we can see from
the third row of Fig. 5.9a, the active detector makes a false prediction at the 9th iteration,
where it mistakes the pole as a pedestrian. According to the negative update rule in the
active detection framework, we will then discount all the similar votes, which indicates
that, in the following frames, the negative coverage by selecting a similar candidate
(e.g., detecting the pole again) will be discounted.
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(a) Input image

(b) Response image

(c) Positive coverage

(d) Negative coverage

Figure 5.9: The active detection results on the 16th frame of the TUD-crossing se-
quence, at the 1st, 3rd, and 9th iteration. Each column illustrates the dynamics of the
corresponding items. By “positive (resp. negative) coverage”, we mean the total sum
of edge weights covered by an observation a positive (resp. negative)label at given
locations.
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Figure 5.10: The active detection results on the 41st frame of the TUD-crossing
sequence, at the 1st (first row), 3rd (second row), and 9th iteration (third row).

(a) Input image

Figure 5.11: The active detection results on the 51st frame of the TUD-crossing
sequence, at the 1st (first row), 4th (second row), and 8th iteration (third row).

Fig. 5.10 demonstrates the above changes. Similar to Fig. 5.9, we show three detections
made by the active detector, on the 41st frame of the video sequence (i.e., the 6th test
image). The active detector managed to ignore the pole as a candidate detection up
to the 9th iteration. Another interesting result we found in Fig. 5.10 is, by using the
Hungarian matching algorithm, we can actually switch the associated ground truth
object of the detections made in the previous iterations, to a better matching. For
example, in the second row and third row of Fig. 5.10, the algorithm proposes two
detections (illustrated as cyan bounding boxes), both could be matched to the same
pedestrian. When the dynamic matching algorithm finds a better matching at the 9th

iteration (third row), it discards the predictions made at the 3rd iteration (second row),
and therefore gives better detection results.

Furthermore, we show in Fig. 5.11 how our active detection framework can detect highly
overlapped objects, without invoking the non-maximum suppression mechanism. In
the first row, it starts to detect the 8th input image (i.e., the 51st frame). When it find
the pedestrian (in blue jacket) closer to the camera at the 4th iteration (second row),
the algorithm doesn’t remove the entire surrounding region. Instead, it only covers its

134



5.3. Experimental Results

direct votes and all neighboring votes. Those edges that are not in any form associated
with the candidate that represent the pedestrian detected are not affected. As a result,
in the third row (8th iteration), the algorithm successfully identifies the pedestrian
further from the scene – which is nearly 90% occluded. In this scenario (i.e., dealing
with highly overlapped objects), our algorithm behaves in a similar manner as that of
[BLK12a], but it has the advantage that, it allows us to address the active detection
problem – by invoking the adaptive submodularity property of the objective function –
in a principled way.

5.3.3 Object Detection on PASCAL VOC Dataset

Dataset and base detector. The third data set differs from the previous two in the
sense that it contains object classes that exhibit much richer structural features (e.g., the
“person” class includes examples of a high variability of poses and shapes). The state-
of-the-art results for this dataset are obtained by the sliding-window based, multi-scale,
deformable parts model (MDPM) of [Fel+10]. To convey the idea that our framework
can incorporate different base detectors, we build our bipartite graph upon an earlier
release (voc-release3) of their system, as it already includes most of the important
innovations of the MDPM, without additional expensive components (e.g., grammar
models as described in [GFM11]) that are designed specifically for certain tasks.

Figure 5.13: Person detection (PASCAL VOC 2008).

In MDPM, each category is modeled by a “root” filter that describes the overall shape
of the object, and a fixed number of “part” filters that describe important sub-areas
of the object at a higher resolution. For multi-scale detection, we keep a feature
pyramid that consists image cells (of size 8× 8, represented by a 31-dimensional HOG

135



Chapter 5. Active Object Detection

descriptor [DT05]) from a pile of rescaled versions of the image. A candidate v is then
characterized by the location and scale of an object and is scored jointly by both root
filter and associated parts filters.

Constructing the voting graph. To build a bipartite graph, we assume that voting
elements correspond to image patches (i.e., cells in the feature pyramid), and will cast
equal votes for a candidate v given that they are inside its associated window. The
total sum of votes v receives from the voting cells amount to the score provided by
the underlying MDPM. To handle the deformable parts, we further assume two types
of candidates: “root candidates” that represent the existence of an object, and “part
candidates” as intermediate nodes in the bipartite graph, that can be voted by (part)
cells. Each candidate node in the bipartite graph will eventually receive (direct) votes
from the root cells, as well as (indirect) votes from the part cells, that are weighted by
the deformation coefficient [Fel+10] of the part window.

Edge similarity is measured based on two sets of features: the filter type of the window
associated with candidate v, and the HOG descriptor of the voting cell σ. To construct
the clusters, we first group the windows (roots and parts separately) by filter type, and
then employ a hierarchical clustering method to retrieve similar edges (i.e., small cosine
distance between HOG descriptors).
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Figure 5.14: Results: PASCAL VOC
2008 “person” category.

We use the same evaluation criterion as pro-
vided by PASCAL VOC Challenge. Fig. 5.14
shows our results on the Person category of the
VOC2008 data set. Note that the active detector
(AUC 0.566) as tested in this experiment only
uses root filters, yet it already outperforms the
passive baseline system (AUC 0.516) that uti-
lizes both root and parts filters. We find that
the passive approach (i.e., “active detection” as-
suming all detections are true) also considerably
outperforms the baseline (AUC 0.544). One pos-
sible reason is that when identifying multiple
objects, our framework by default bypasses the
non-maximum suppression approach and thus has better recall.
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5.4 Related Work on Object Detection

Multiple object detection via submodular optimization. Sliding-window based al-
gorithms [Fel+10] and patch based (e.g., Hough transform based) algorithms are two
of the most popular approaches for multiple object detection. These methods produce
responses with peaks at candidate object locations. When dealing with overlapping
hypotheses, conventional object detection methods use non-maximum suppression or
mode-seeking to locate and distinguish peaks. Such post-processing requires tuning
of many parameters and is often fragile, especially when objects are located spatially
close to each other. Alternatively, Barinova, Lempitsky, and Kholi [BLK12a] propose
a probabilistic framework for multiple object detection, with an objective function
satisfying submodularity, which can be solved efficiently with a greedy algorithm for
submodular maximization [NWF78]. Hereby, submodularity captures diminishing
returns in the detector response at nearby object locations. In their framework, image
patches are employed as voting elements, which can cast probabilistic votes for hypotheses
that encode some specific configuration of an object. Our work is inspired by this
framework. In contrast to their approach, however, we consider the active detection
setting, where detection is interleaved with expert feedback.

Active learning for object recognition. Active learning has been used successfully
for reducing labeling cost in a classification setting [JPP12], given a large amount
of unlabeled data. However, it has been shown to be more challenging for object
detection problems. These approaches start off with few annotated images and then
look at a pool of unlabeled examples, and find the ones which would most improve
the performance of the classifier once their label has been obtained. This procedure
has been shown to significantly reduce the number of required labels [AF04; Kap+07;
Bie12]. Vijayanarasimhan and Grauman [VG11] employ active learning together with
crowdsourcing techniques on web-crawled images to provide an end-to-end system
for automatically learning object detectors. In the existing literature, however, active
learning has only been applied to train a good base detector. In this work, we consider
the complementary setting, of taking a base detector (trained, e.g., using active learning),
and applying it in an active manner, i.e., interleaving automatic detection with expert
feedback.
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5.5 Summary

We proposed an active detection framework that enables turning existing base detectors
into automatic systems for intelligently interacting with users. Our approach reduces
active object detection to a sequential edge covering optimization problem. Our
objective function satisfies adaptive submodularity, allowing us to use efficient greedy
algorithms, with strong theoretical performance guarantees. We demonstrated the
effectiveness of the active detection algorithm on three different real-world object
detection tasks, where showed that active detection not only works for various base
detectors but also provides substantial advantages over its passive counterpart.
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Practical Challenges
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6
Exploiting Information Parallelism

Thus far, we have considered adaptive information acquisition as a sequential decision
process. However, in many practical implementations (such as crowdsourcing, surveys,
high-throughput experimental design), it is preferable to acquire information in parallel
due to time and resource constraints, for example, in situations where tests performed
in parallel could have shared cost. Such information gathering setting have been studied
from the perspective of batch-mode active learning. While several heuristics have been
proposed for such problems, little is known about their theoretical performance.

In this chapter, we consider information-parallel stochastic optimization problems
that exhibit adaptive submodularity. We prove that for such problems, a simple greedy
strategy is competitive with an optimal batch-mode policy. In some cases, perhaps
surprisingly, the use of batches incurs competitively low cost, even when compared
to a fully sequential strategy. We demonstrate the effectiveness of our approach on
batch-mode active learning tasks, where it outperforms the state of the art, as well as
the novel problem of multi-stage influence maximization in social networks.

Organization of this chapter. We start by stating the general batch-mode stochastic
optimization problem in §6.1. In §6.2, we focus on the extreme case where all informa-
tion are acquired in a single batch, and hence the batch-mode information acquisition
problem reduces to a non-adaptive optimization problem. In §6.3, we consider the more
general batch-adaptive setting, and prove strong performance guarantees for a simple
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greedy algorithm. We provide practical algorithms for batch-mode active learning and
influence maximization problem in §6.4, and demonstrate the empirical effectiveness of
the algorithms for both applications in §6.5. In §6.6 we summarize the chapter.

6.1 Problem Statement

We first describe two different applications that fall into the batch-mode setting. Then,
in Section 6.1.2 we introduce a formalism that captures both problems.

6.1.1 Motivating applications

Example 6.1 (Multi-stage influence maximization in social networks). Suppose we would
like to stimulate demand for a new product. By giving the product to a subset of target people for
free, we hope these people can influence their friends, potentially creating a cascade of influence
motivating many more consumers to adopt the product. Instead of committing to all target
nodes in advance, it is natural to consider conducting a multi-stage advertising campaign: In
each stage, a subset of k nodes are targeted, then the effect of the campaign is observed, then
the next k target nodes are chosen, and so on. Implementing such a procedure may be much
more practical if many (i.e., for k > 1) nodes can be selected in each stage, to be influenced
in parallel. Our goal is to find the best strategy to select (batches) of people to target, so that
influence of the selected subset can be maximized.

The above problem was formalized by Kempe, Kleinberg, and Tardos [KKT03] as a
stochastic optimization problem, who show that many natural diffusion models (such
as the independent cascade [GLM01], or linear threshold models [Gra78]) can fit into
a general stochastic optimization framework based on submodular functions. Their
results were later generalized to the adaptive setting in [GK11a]. As a concrete example,
let us consider the independent cascade model. Formally, let V = {1, . . . , t} be the
set of nodes in the social network, and let Xv be the (random) set of nodes eventually
influenced if v is initially targeted (Xv denotes the outcome of “test” v if we stick to the
terminology introduced in §2.1.1). In the independence cascade model, we assume a
factorial distribution over the test outcomes. Therefore, if a set A of nodes is initially
targeted, the eventual influence is

⋃
v∈A Xv with probability P(XA) = ∏v∈A P(Xv).
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Figure 6.1: Illustration of batch mode active learning (with batch size k = 3), in the
simple case of one-dimensional data and binary threshold hypotheses. The upper-left
figure shows the unlabeled data (top row), the first batch selected for labeling (middle
row), and received labels, as well as second selected batch (bottom row). The lower-right
figure illustrates the decision tree representing a batch-adaptive policy.

Example 6.2 (Batch-mode pool-based Bayesian active learning (BMAL)). We are given
a pool of unlabeled examples indexed by V = {1, . . . , t}, with (initially unknown) labels
x1, . . . , xn ∈ {+1,−1}. We wish to learn a classifier h : V → {+1,−1} out of a finite set
H of hypotheses, each corresponding to distinct labelings of the pool V , and containing the
true labeling, i.e., a hypothesis h such that h(v) = xv for v ∈ V . An optimal active learning
strategy is one that minimizes the expected number of labels requested, in expectation over a
given prior P [H]. We consider strategies for batch-mode active learning, which pick batches
of k unlabeled examples at a time, then request all labels for the selected batch in parallel, and
then proceed to pick the next batch given the labels obtained so far.

As discussed in Part II of this dissertation, the pool-based active learning problem has
been extensively studied under the sequential setting, a classical solution being GBS. In
essence, GBS attempts to selects the examples that can shrink the probability mass of
the version space as quickly as possible (recall from §4.1.4 that we use H(xA) = {h ∈
H : i ∈ A ⇒ xv = h(v)} to refer to the version space consistent with the observation
xA.). Analogously, under the batch-mode setting, we wish to select batches of examples
of size k that can quickly shrink the version space, such that these examples allow us to
uniquely identify h (i.e., to infer the labels of all unlabeled examples, or equivalently
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to have |H(xA)| = 1). See Figure 6.1 for an illustration of the batch-mode policy for
learning 1-dimensional threshold function under the realizable setting.

6.1.2 General Problem Statement

Under the sequential setting, both applications of §6.1.1 can be captured by the general
adaptive information acquisition problem as stated in §2.1: Given the joint probability
distribution P [XV ] and reward f (xA) of observations xA, we want to find the best
policy for selecting tests. These applications differ by their choices of reward function
f . For the influence maximization example, we can use f (xA) = |

⋃
v∈A xv|, i.e., the

number of nodes eventually influenced. For our active learning example, we can use
f (xA) = |H| − |H(xA)|, i.e., the number of the hypotheses eliminated through the
labeled examples xA.

In both applications, f is adaptive monotone, adaptive submodular (§2.3.2), and pointwise
submodular (§2.3.4). In this chapter, we will mainly discuss the batch-mode extension
of the adaptive minimum cost coverage problem (Problem 2.1.3). That is, we aim to find
a policy π for selecting items (and associated observations) xA, such that we achieve
a certain quota of value Q ≥ 0, i.e., f (xA) ≥ Q, while at the same time minimizing
the cost of performing the tests in A. In the influence maximization example, Q may
be a certain fraction of the size of the social network. In active learning, Q = |H| − 1:
achieving this quota is a necessary and sufficient condition for identifying the true
hypothesis. In the following, w.l.o.g.1, we assume f (xV ) = Q for all xV ∈ supp(P [XV ]).

Unless explicitly pointed out, we assume unit cost for each test, i.e., c(v) = 1 and
C(xA) = ∑v∈A c(v) = |A|. Therefore, our definition of the expected and worst-case
cost of policy π in §2.1.2 reduce to

costavg(π)=ExV [|S(π, xV )|] ; costwc(π)=max
xV
|S(π, xV )|

where recall S(π, xV ) represents the set of tests that π selects, given that the outcomes
of the realized tests are consistent xV . Now let Π denote the set of candidate policies
from which we can choose. This could be, for example, all batch-mode policies of batch
size k. We want to find a feasible policy π∗ with minimum cost,

π∗ ∈ arg min
π∈Π

cost(π), subject to f (S(π, xV )) ≥ Q for all xV with P [xV ] > 0.

1If f (xV ) > Q, we replace f with the (submodular) function fQ(xA) = min( f (xA), Q).
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Figure 6.2: Information Acquisition: from full-batch (non-adaptive) setting to sequential.

Batch selection Based on the above notations, we can study how different classes of
policies compare in terms of their cost. Denote the set of policies by Π. On the one
extreme, we have fully sequential policies, denoted by Πseq(⊂ Π), where the choice of
each item may depend on the labels of all previous items selected. On the other extreme,
we have constant, or non-adaptive policies Πconst(⊂ Π) which commit to items picked
in advance, before making any observations (and therefore it does not depend on the
observations). However, fully sequential and constant policies are only two extremes
on a spectrum (See Fig. 6.2). We are interested in policies Π[k] that sequentially pick
batches of size k. Any policy π ∈ Π[k] starts selecting a fixed set A1 ⊆ V of k items. It
then obtains all labels xA1 . If f (xA1) ≥ Q, it stops. Otherwise, if batches A1, . . . ,A`−1

have already been selected, it picks batch A` ⊆ V of k items, obtains the labels, and
stops if f (xA1∪···∪A`

) ≥ Q.

Obtaining an optimal batch policy is a formidable task. In fact, even representing an
optimal batch policy may require exponential space: There are (n

k) batches of size k,
and an optimal batch policy assembles such batches into a decision tree of possibly
exponentially large branching factor. In the following sections, we will study how
to design an efficient batch policy, while guaranteeing that it is competitive with the
optimal policy. In particular, we describe a simple greedy algorithm and prove that
it implements a batch policy with cost competitive to that of the optimal batch policy.
Moreover, we prove that under some additional conditions on the distribution P [XV ],
the greedy algorithm is even competitive with the optimal fully sequential policy.
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6.2 Open-loop Information Acquisition

Before we analyze the behavior of a batch-adaptive policy, we first dive into the non-
adaptive setting, and take a look at how a (constant) greedy policy performs within
a single batch, compared with the optimal sequential policy. A key notion we use for
analyzing the performance of a non-adaptive policy is the adaptivity gap, defined as
follows.

Definition 6.3 (Adaptivity Gap). The adaptivity gap of ( f , P) and cardinality constraint
k(k ≤ |V|) is defined as

gapk( f , P) =
optseq(k)

optconst(k)
,

where optseq(k) = maxπ∈Πseq ExV [ f (S(π, xV ))] denotes the optimal sequential expected
reward of f under cardinality constraint k, and optconst(k) = maxπ∈Πconst ExV [ f (S(π, xV ))]
denotes the optimal constant expected reward under the same constraint.

From now on we use the notation gapk = sup( f ,P) gapk( f , P) and we call it the adap-
tivity gap under cardinality constraint k.

6.2.1 Factorial Prior Distribution

To begin with, we assume that the variables X1, . . . , Xn are independent. This assump-
tion is satisfied in the influence maximization application, e.g., when we assume the
independent cascade diffusion model. An important result that relates optseq with
optconst is by Asadpour and Nazerzadeh [AN15], which we state as below.

Theorem 6.4 (Adapted from Asadpour and Nazerzadeh [AN15]). Let f : 2V×X → R≥0

be monotone and submodular, and P [XV ] such that ( f , P) is adaptive submodular. Assume
the set of variables XV = {X1, . . . , Xv} are independent, i.e., P [XV ] = ∏v∈V P [Xv]. Then,
for any k, there exists a non-adaptive policy of length k (i.e., running the policy till selecting k
items) that approximates the optimal (sequential) adaptive policy of length k within a factor of
1− 1/e. In other words, the adaptivity gap

gapk <
e

e− 1
.
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Algorithm 6: The Non-adaptive Greedy algorithm.

1 Input: Batch size k, reward function f : 2V×X → R≥0 and prior P [XV ];
2 Output: Selected items A. begin
3 A ← ∅;

while |A| ≤ k do
4 v← arg maxv′ ExV [ f (A∪ {v′}, xV )− f (A, xV )];
5 A ← A∪ {v};

end

end

We refer interested readers to [AN15] for the proof of Theorem 6.4. This result implies
that under a factorial prior, the price of parallelism is always bounded by a constant,
independent of the cardinality constraint k.

Note that finding the optimal non-adaptive policy is also NP-hard. In practice we choose
to run a simple greedy algorithm (Algorithm 6). Since we assume f is adaptive mono-
tone and pointwise submodular, we know that the set function F(A) = ExV [ f (A, xV )] is
monotone submodular. Therefore, by [NWF78] we know Algorithm 6 achieves a 1− 1/e
approximation of the optimal non-adaptive policy. Combining with Theorem 6.4 we
obtain the following corollary:

Corollary 6.5. Let f : 2V×X → N be monotone and submodular, and assume P [XV ] is a
factorial distribution such that ( f , P) is adaptive submodular. Denote the greedy (constant)
policy induced by Algorithm 6 as π

g
const, and the optimal sequential policy as π∗seq. If we run

π
g
const and π∗seq under the same cardinality constraint, then it holds that

F(πg
const) ≥ F(π∗seq) ·

1
gapk

(
1− 1

e

)
>

(
1− 1

e

)2

F(π∗seq), (6.2.1)

where F(π) := ExV [ f (S(π, xV ))] denotes the expected reward of a policy π.

6.2.2 Adaptivity Gap for Arbitrary Distribution2

Now we turn our attention to the general case where the distribution P over test
outcomes XV is not factorial. Many practical applications fit into this setting. For

2Results presented in §6.2.2 are based on unpublished work in collaboration with Gábor Bartók, who
provided the proofs of Theorem 6.6 and Theorem 6.7.
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example, in active learning, the label of an example depends on other examples; in
the influence maximization application, (instead of the independent cascade model)
we may assume that the probability one node succeeds in influencing its neighbors
depends on its record in previous rounds. In this following, we state the adaptive gap
under general distributional assumptions.

We first establish an upper bound on the adaptivity gap for cardinality constraint k = 2.

Theorem 6.6. Let f : 2V×X → R≥0 be monotone and submodular, and P [XV ] such that
( f , P) is adaptive submodular. The adaptivity gap for ( f , P) and cardinality constraint k = 2
can be upper bounded as

gap2 ≤
e

e− 1
.

The proof of Theorem 6.6 relies on a reduction to the factorial distribution setting
for k = 2, and thus we can use the Theorem 6.4 to obtain the bound. To keep the
discussion concise we defer the details of the proof to §A.4.1. Based on this base case,
we generalize the adaptivity gap to arbitrary cardinality constraint k:

Theorem 6.7. For general adaptive submodular functions f and arbitrary distribution P, the
adaptivity gap for cardinality k can be upper bounded as

gapk ≤
2gap2

gap2 − 1
klog(gap2) .

Moreover, in the special case where k is a power of 2, we can further tighten the bound as

gapk ≤
gap2

gap2 − 1
klog(gap2) .

The general proof strategy is to first use induction to prove the case where k is a power
of 2, and then generalize the result to arbitrary k using adaptive submodularity. The
full proof will appear in §A.4.2. Combining Theorem 6.6 and Theorem 6.7 we obtain
gapk ≤ e · k0.662 for k being a power of 2, and gapk ≤ 2e · k0.662 for general k ≤ |V|.
Note that the bound in Theorem 6.7 is non-trivial whenever log(gap2) < 1, that is, if
gap2 < 2. If gap2 can have a tighter upper bound, the upper bound on the adaptivity
gap gets tighter as well.

6.3 BatchGreedy: Greedy Approach and Guarantees

We now investigate the batch-adaptive setting, where we consider a simple, greedy
approach towards constructing batch policies. This policy, BatchGreedy, selects
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items within a batch in a greedy manner (i.e., following Algorithm 6), then receives
observations for all items in the batch, then selects the next batch in a greedy manner,
conditional on all observations made so far, and so on. An important challenge in batch
selection is the fact that the value of items (e.g., unlabeled examples) selected depends
on observations (e.g., labels) obtained only after the entire batch is selected. In active
learning, for example, one wishes to select examples within a batch that are likely to
be informative individually, but also diverse (minimize redundancy). BatchGreedy
addresses this challenge by using a suitable notion of marginal benefit of an item, that
takes into account all observations made so far, as well as items that have already been
selected within the batch (but no observation has been obtained yet). Formally, we
generalize the conditional marginal benefit of item v (c.f. Eq. (2.3.2)) by

∆ f (v | B, xA) = ExV

[
f (x{v}∪B∪A)− f (xB∪A) | xA

]
. (6.3.1)

Thus, ∆ f (v | B, xA) reflects the expected marginal gain of item v, when items A have
been selected and the corresponding observations xA have been made, and items
B have already been selected, but no observations have yet been made about them.
Therefore, Eq. (6.3.1) captures possible redundancy (diminishing gains) of candidate
item v w.r.t. to labels already obtained, as well as labels that will likely be obtained
within the batch. Hence it encourages diversity among the items selected in the batch.

6.3.1 The BatchGreedy Algorithm

Using this notation, the BatchGreedy policy will greedily select the i-th element in the
j-th batch

vi,j = arg max
v∈V

∆ f (v | {v1,j, . . . , vi−1,j}, xA),

where xA is the set of observations (labeled examples) from batches up to j− 1. After
a batch is completed, all labels are requested and added to the observations xA.
Pseudocode is presented in Algorithm 7.

If we set the batch size k to 1, BatchGreedy reverts back to a fully sequential, greedy
active learning scheme. In particular, for the active learning example, this algorithm
reduces to the GBS policy. According to our discussion in §4.2.2, we know that cost of
GBS is upper-bounded by O(log |H|) times that of the optimal sequential policy. As
the first main theoretical contribution of this chapter, we generalize their results, which
only hold for fully sequential policies, to the batch setting.
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Algorithm 7: The BatchGreedy algorithm.

1 Input: Quota Q. Objective f and prior P(yV );
begin

2 xA ← ∅;
while f (xA) ≥ Q do

3 B ← ∅;
foreach i ∈ {1, . . . , k} do

4 v← arg maxv′ ∆ f (v′ | B, xA);
5 B ← B ∪ {v};

end
6 Observe xB and set xA ← xA ∪ xB;

end

end

6.3.2 Theoretical Analysis

We first show that BatchGreedy is near-optimal as compared to the optimal batch
selection policy.

Theorem 6.8. Let costavg(π∗batch,k) be the expected cost and costwc(π∗batch,k) be the worst-case
cost of an arbitrary policy π∗batch,k selecting batches of size k. Further let δ = minxV∈supp(P) P [xV ].
Then for the cost of the policy π

g
batch,k implementing BatchGreedy it holds that

costavg(π
g
batch,k) ≤ costavg(π

∗
batch,k)

( e
e− 1

)(
ln Q + 1

)
, and

costwc(π
g
batch,k) ≤ costwc(π

∗
batch,k)

( e
e− 1

)(
ln

Q
δ
+ 1
)

.

Note that the guarantee of Theorem 6.8 matches (up to a small constant factor) hardness
results known for the fully sequential (k = 1) setting, which it generalizes, therefore
BatchGreedy is near-optimal under computational constraints. Further note that for
the active learning application, Theorem 6.8 guarantees that in the non-Bayesian setting
(i.e., without any prior3), BatchGreedy requires at most a factor of O(ln |H|) more
batches than the optimal batch-mode policy.

3In the special case of a uniform prior, δ = 1
|H| . For general priors (with small δ), BatchGreedy can

be proved to yield an O(log |H|) approximation, following analogously from Theorem 9.1 in Golovin
and Krause [GK11b].
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As the second main theoretical result of this chapter, we also prove that, perhaps
surprisingly, under certain conditions BatchGreedy is not just competitive with an
optimal policy that is restricted to selecting batches of examples: It is competitive with
respect to an optimal fully sequential policy, which is not required to obey such a
restriction.

Theorem 6.9. Fix β > 0. Let costwc(π∗seq) be the worst-case cost of an optimal sequential
policy π∗seq, constrained to picking a number of items which is a multiple of k. For the cost of
the policy π

g
batch,k implementing BatchGreedy, run until it achieves f (πg

batch,k) ≥ Q− β it
holds that

costwc(π
g
batch,k) ≤ costwc(π

∗
seq) · gapk ·

e
e− 1

·
(

ln
Q
β
+ 1
)

.

Moreover, it holds that P
(

f (S(πG, xV )) ≥ Q
)
≥ 1− β.

The proofs are given in §A.4. The key technical insight behind the proof relies on the
adaptive gap proved in §6.2, which allows us to interpret the BatchGreedy policy
as an approximate implementation of the fully sequential greedy policy. Note that
Theorem 6.9, for technical reasons, has a slightly different flavor than Theorem 6.8:
it compares the optimal policy π∗ always achieving quota Q with one achieving the
quota Q only with probability 1− β. By choosing β < minxV∈supp(P) P(xV ), it can be
guaranteed that in fact f (S(πg

batch,k, xV )) = Q for all xV with nonzero probability.

Remark 6.10. Under the assumption that the test outcomes are independent, we can
plug in the upper bound on gapk of Theorem 6.4 and obtain

costwc(π
g
batch,k) ≤ costwc(π

∗
seq)

(
e

e− 1

)2 (
ln

Q
β
+ 1
)

.

In this case, the bound on the worst-case cost of Theorem 6.9 is only a factor of
e/(e− 1) ≈ 1.58 larger than that of Theorem 6.8, irrespective of the batch size k.

Considering sublinear cost within a batch. In many practical applications, the cost
of acquiring a batch of labels in parallel can be significantly less than the cost of
obtaining the same number of labels in sequential rounds. This could be due to shared
cost when obtaining a set of labels, such as overhead time for start-up when running
experiments, communication cost when conducting a survey, etc. There are fixed up-
front costs for each round (e.g., time/energy spent to initialize a (set of) experiments),
as well as variable costs per test (e.g., there is an incremental cost when we conduct one
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more experiment on the current platform). In such scenarios, instead of considering
each test to have unit cost (i.e., by assuming a modular cost function), it is natural to
model the cost as a submodular function of a set of examples selected in the same batch.
One cost model that has been studied under the batch-mode setting [YC13] is to use a
sublinear function of the batch size, i.e., C(A) = a|A|p + b, where b is the set-up cost,
|A| is the number of queries, a is the coefficient, and p ≤ 1. If we consider this cost
model and make no assumptions on the prior distribution, then by Theorem 6.7 and
Theorem 6.9 we get

costwc(π
g
batch,k) ≤ costwc(π

∗
seq)

(
e

e− 1

)(
ln

Q
β
+ 1
)
· 2gap2

gap2 − 1
klog gap2 · akp + b

k

Plugging in the upper bound on gap2 from Theorem 6.6, we obtain an upper bound
on the cost of BatchGreedy under the sublinear cost model: costwc(π

g
batch,k) =

costwc(π∗seq) · O
((

ln Q
β + 1

)
kp−0.332

)
. We observe that the approximation factor is

sublinear in k; for p < 0.332, BatchGreedy could incur lower cost than the optimal
sequential policy when for large batch size k.

6.4 Efficient Implementation of BatchGreedy for BMAL

As is, BatchGreedy is not immediately practical for the two applications discussed in
this chapter: Computing the marginal gains (6.3.1) requires computing expectations that
may be intractable. In the influence maximization application, it is possible to perform
Monte-Carlo sampling of the influence process to evaluate (6.3.1) up to arbitrarily small
multiplicative error (1 + ε) [KKT03]. Furthermore, with a slight generalization of the
arguments of Golovin and Krause [GK11b], using such an approximation of (6.3.1)
increases the cost by at most the same factor (1 + ε).

To obtain a practical algorithm for batch mode active learning, further challenges arise:
BatchGreedy requires that H is finite, and its running time depends polynomially
on |H|. Furthermore, it requires that observations are noise free. As a practical
implementation, we focus on active learning of linear separators: let us denote the
(κ-dimensional) feature vector of (unlabeled) example v ∈ V by v ∈ Rκ, then each
hypothesis h corresponds to (homogeneous) linear separator h(v) = sign(wTv). In our
experiments, we use a Markov-Chain Monte Carlo sampler to generate samples from
the posterior distribution over hypotheses P(w | xA). In particular, we build on the
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(a) ε = 0 (b) ε = 0.2

Figure 6.3: Illustration of Algorithm 8 in 3-d space. (a) shows the sampling result in
noise-free case (red arrows are constraints); (b) shows the sampling result when 20%
of the observations are noisy: hypotheses that violate more constraints induce lower
confidence.

hit-and-run sampler [Smi84; Lov98], which is known to lead to a provably efficient near-
optimal estimation for the fully sequential active learning problem [GSSS11]. To handle
noise, at each iteration, we generalize the hit-and-run sampler by sampling the entire
version space, while varying the sample density according to a likelihood function.
In the case of binary symmetric channel (i.e., labels are flipped with probability ε,
c.f. Fig. 3.3), we sample hypotheses according to how many times they predict the
wrong label. This way, our method can handle data that are not linearly separable.
Algorithm 8 presents details of our sampler , and our final batch-mode active learning
algorithm is formalized in Algorithm 9. The time complexity of random sampling
(Algorithm 8) is O(sT), where s is the number of sampled hypotheses, and T is the
number of mixing iterations. Once we discretized the hypothesis space with t samples,
it takes O(kts) steps for Algorithm 9 to select a batch of k items (recall that t denotes the
number of unlabeled examples). Hence the time complexity of Algorithm 9 selecting
one batch is O(s(T + kt)).

Furthermore, in both applications, we can use lazy evaluations to speed up the Batch-
Greedy algorithm (as used in Golovin and Krause [GK11b] for the fully sequential
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Algorithm 8: (Noisy) hit-and-run hypothesis sampler for linear separators

1 Input: Labeled examples B and their labels xB, the number of samples to be
generated s, the number of mixing iterations T, the noise level ε ∈ [0, 0.5);

2 Output: Hypotheses set Ĥ;
begin

3 w0 ← a random point on κ-dimensional unit sphere Sκ;
foreach i ∈ {1, . . . , s} do

4 σ ← a random direction (unit vector) in Sκ;
5 Set L ← Sκ ∩ {w | w = wi−1 + σρ, ρ ∈R}, and select wi from sector L

with ρ ∼ p(ρ) ∝ ( ε
1−ε )

l, where l = |{v : v ∈ B, (v, sign(wT
i v)) /∈ xB}|;

6 Add every T-th sample hi(v) = sign(wT
i v) to Ĥ;

end

end

setting). Lazy evaluations utilize the fact that the marginal gains ∆ f (s | A, yB) are
monotonically decreasing in both A and yB. This insight can be exploited by utilizing
priority queues to accelerate selection of the next greedy choice.

6.5 Experimental Results

We empirically evaluate BatchGreedy on several data sets and both applications
discussed at the beginning of this chapter. Our emphasis is on comparing BatchGreedy
with baselines, as well as empirically quantifying the price of parallelism.

6.5.1 Multi-stage Influence Maximization in Social Networks

We first apply BatchGreedy to the multi-stage influence maximization problem. We
use two data sets from the SNAP repository [LK14]: the Epinions social network (with
75879 nodes and 508837 directed edges, where members of the site can decide whether
to “trust” each other) and the Slashdot social network (with 82168 nodes and 948464
directed edges, where users are allowed to tag each other as friends or foes). For
each network, we take the subgraph induced by the top 1000 nodes with the largest
outdegree. We use the independent cascade model [KKT03]. In our simulations, we
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Algorithm 9: Approximate implementation of BatchGreedy for BMAL

1 Input: Hypotheses H, batch size k, noise level ε;
begin

2 Sample Ĥ = {h1, . . . , hs} from H using Algorithm 8;
3 Define P̂(H) = 1

s ∑s
`=1 δh` ; set xB ← ∅;

while (1− ε) of all hypotheses in the support of P̂ induce same labeling on the
unlabeled pool do

4 A ← ∅;
foreach i ∈ {1, . . . , k} do

5 v←arg min
v′

s
∑
`=1

[
P̂(H({(v, h`(v)) : v∈A ∪ {v′}}))

]
;

6 A ← A∪ {v};
end

7 Observe xA and set xB ← xB ∪ xA;
8 Sample Ĥ = {h1, . . . , hs} (Algorithm 8) using xB;
9 Update approximation P̂(H) = 1

s ∑s
`=1 δh` ;

end

end

assume that each person has a fixed probability of influencing its neighbors. We choose
this probability t according to the edge density of the target network, in our case to
0.05 and 0.03, respectively.

We evaluate the performance of BatchGreedy while varying the size of batches picked
at each stage. We repeat the experiments 100 times for all batch sizes (the non-adaptive
method corresponds to infinite batch size). In each experiment, we initialize 100
random realizations of the target network based on the edge activation probability,
and greedily select the best node in expectation. The results are summarized in Figure
6.4a and Figure 6.4b. We observe that for the Epinions network, the sequential greedy
policy covers 99% of the target network by selecting 244 nodes, while the 10-batch
greedy policy, 100-batch greedy policy and non-adaptive greedy policy cost 241, 284,
and 584 nodes respectively, to achieve the same coverage. Similarly, for the Slashdot
network those numbers are 330, 319, 343, 765. After acquiring the first batch of labels,
BatchGreedy performs surprisingly well, even competitively with the fully sequential
policy.
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Figure 6.4: Results: Adaptive Influence Maximization

6.5.2 Batch-mode Active Learning of Linear Separators

One natural way to perform batch-mode active learning is to select batches comprising
the k most uncertain examples. As one baseline, we use “batch mode margin-based
active learning” (k-batch SVM) to greedily select batches of examples, as considered
in Jain, Vijayanarasimhan, and Grauman [JVG10] for large-scale active learning. In
this method, we randomly chose examples until there are two distinct labels, and we
train SVM classifiers based on the labeled examples at the end of each batch. The
next k unlabeled examples with the smallest distances from the decision boundary
wTv+ b = 0 are selected for labeling. Another baseline approach we employ is the state
of the art batch mode active learning algorithm (KLR-BMAL) of Hoi et al. [Hoi+06b]
that selects batches of k examples that are informative w.r.t. the Fisher information
matrix. To see how well the parallelization of the selection process approximates the
sequential algorithm, we compare it with the fully sequential active learning algorithm,
where only one example is selected and observed at each iteration, as well as a “passive
learning” approach, where we make no observations during the learning process
(corresponding to infinite batch size). We also compare BatchGreedy against the
sequential algorithm with purely random selection.

For a fair comparison, we use SVM as the classifier for all competing algorithms, so
the methods only differ by the set of examples chosen for labeling. We implement
the KLR-BMAL algorithm using class membership probabilities inferred from the
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Figure 6.5: Results: Batch-mode active learning

hypothesis sampler and set the smoothing parameter δ to be 0.1 [Hoi+06b]. As for
our sampler, we set ε to be 0.1 (Generally ε can be chosen via cross-validation). We
normalize the data so that each feature has mean 0 and standard deviation 0.5, and
place independent normal priors on each dimension. The results of all the batch mode
active learning experiments are obtained from 150 random starts.

We run our first set of experiments on two UCI datasets [Lic13], WDBC (569 instances,
32-dimensional) and Australian (690 instances, 16-dimensional), using a fixed number
of 5000 sampled hypotheses in each random trial. Figure 6.5a and Figure 6.5c depict
the 150-trial average percentage of mistakes made by each algorithm when predicting
the labels of the corresponding data set, for a batch size of k = 10. Figure 6.5c shows an

157



Chapter 6. Exploiting Information Parallelism

improvement of BatchGreedy over both KLR-BMAL and the 10-batch SVM algorithm.
On both datasets, surprisingly, BatchGreedy is competitive with the fully sequential
greedy algorithm, with only minor differences.

We also evaluate BatchGreedy on the MNIST dataset. For each of the 14780 instances,
we reduced the dimensionality down to 10 via PCA, and compare BatchGreedy with
the sequential, KLR-BMAL, 10-bacth SVM, passive and random algorithms through 150
random trials. We observe that, even using 5000 sample hypotheses for each iteration,
BatchGreedy is significantly faster than KLR-BMAL, as the cost of BatchGreedy
grows linearly w.r.t. the number of hypotheses and number of examples, while KLR-
BMAL costs quadratically w.r.t. the number of examples. In fact, for the same settings,
it takes KLR-BMAL approx. 50 seconds to select one example, compared to approx. 10
seconds for BatchGreedy.

Furthermore, we study the impact of the discretization parameter M (i.e., the number
of hypotheses used to sample the version space), varying it from 300 to 5000, and we
plot the results for each setting in Figure 6.5b. For the WDBC data set, we can observe a
statistically significant performance improvement across the 150 trials when increasing
the number of sampled hypotheses used from 300 to 2000. Starting from 3000 samples,
however, the advantage of introducing more samples begins to decrease dramatically.
As there is a linear increase in running time as we employ more samples, we suggest to
pick a moderate M to balance efficiency and accuracy.

6.6 Summary

We presented a general framework for batch mode active learning and stochastic
optimization. We analyzed BatchGreedy, an intuitive adaptive greedy approach, and
proved its competitiveness with the optimal batch-mode policy. For some problem
instances (e.g., multi-stage influence maximization) we proved that perhaps surprisingly,
the use of batches only incurs a bounded increase of cost as compared to allowing fully
sequential selection. In addition to new theoretical results, we empirically demonstrate
the effectiveness of BatchGreedy on two real-world applications: Batch mode active
learning of linear separators (where BatchGreedy outperforms state of the art), and
multi-stage influence maximization (where we observe a surprisingly small increase in
cost compared to the fully sequential strategy). A natural question for future work is to
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understand more generally for which problems the price of parallelism, i.e., the increase
in cost by restricting to information-parallel decisions, is bounded. We believe that our
results provide an important step in characterizing the (approximate) tractability of
practical active learning and optimization problems.
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7
Unknown parameters: Converting

Offline to Online

A crucial assumption we have made in Part II of this dissertation is that the probabilistic
model is fully specified, and thus we can score tests based on such information for
greedy optimization. Unfortunately, in practice, the underlying distribution over
hypotheses/test outcomes P [XV ] is often unknown and requires to be learned over
time. For instance, in viral marketing/ influence maximization (Example 6.1), we may
not know in advance the probability of a node successfully influencing its neighbors;
in active learning (Example 6.2), we may not have access to prior distribution over
the hypotheses. Since our adaptive greedy framework described in Algorithm 1 relies
on the prior distribution over the test outcomes, it is unclear how one can adapt our
algorithms to handle this challenging practical setting.

In this chapter, we propose an online adaptive information acquisition framework, which
adapts the offline algorithms considered in this dissertation into the online setting.
Concretely, we maintain a distribution over the parameters of P [XV ]; for each epoch, we
employ a posterior sampling approach, where we first draw samples of the parameters
of the distribution according to their probabilities of being “true” conditioned on the
current observation (i.e., in the sense that they reflect the true parameters), and then
deploy the adaptive greedy framework on top of the sampled distribution.
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We establish a rigorous bound on the expected regret (defined in terms of the value of
information) of the online algorithm. As a concrete application, we demonstrate our
online learning framework on the troubleshooting platform which was introduced in
§4.6.4. Our experimental results imply that the online framework encourages active
exploration, which, combined with the offline algorithms proposed in §4, leads to
effective online learning of the optimal VoI.

Organization of this chapter. We describe the problem setup, and formally state the
online optimization problem in §7.1. In §7.2, we propose OnlineVoI, our efficient
online framework for adaptive information acquisition. In §7.3 we present our main
theoretical result on the regret bound of OnlineVoI. We demonstrate the effectiveness
of the framework in §7.4 and summarize the chapter in §7.5.

7.1 Problem Statement

We first provide two motivating applications for the online learning setting, and then
formally state the key problem of this chapter.

7.1.1 Motivating Applications

Example 7.1 (Online interactive troubleshooting). Imagine that we want to build an intel-
ligent online troubleshooting system as a replacement of human representatives at a customer
service/ call center of a cellphone company. At an early stage, we do not have full knowledge on
what symptoms correspond to what root-causes of the problems of a cellphone. Rather, we start
with some prior estimation of the distribution over the (root-cause, symptom) pairs, and would
like to refine the model online. Every time a customer calls in, the system can ask questions on
the symptoms of her device and receive feedback. After acquiring enough information on the
symptoms, the system suggests what is the root-cause and solution to the customer at the end
of the conversation, and receive a reward. We call each conversion session an “epoch” in the
online learning process. The solution can be further verified by a human agent, so that at the
end of each epoch, the system obtains a sequence of (root-cause, symptom) pairs which it can
use as new training data. The goal is to design an online sequential decision making strategy
which attains high reward while minimizing the number of questions asked.
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…

…

…

Figure 7.1: Converting offline to online.

We illustrate our problem setup in Fig. 7.1. Customers call in one after the other for
troubleshooting. Within each epoch (i.e., for each client), we are essentially solving an
(offline) adaptive information acquisition problem, which we have discussed extensively
in §4. The reward that the system can get at the end of each epoch is exactly the
decision-theoretic value of information (c.f. Eq. (2.2.3) and (4.1.1)). If we know the true
distribution, we know from §4 that running DiRECt (§4.3) or ECED (§4.5) guarantees
near-optimal cost for achieving the maximal reward, when comparing with the optimal
algorithm under the actual distribution. Under the online learning setting, other than
asking the most informative question for solving the current customer’s problem (i.e.,
exploitation), we also need to engage the client with more explorative questions that
may help with learning the probabilistic model (i.e., exploration).

Example 7.2 (Online Viral Marketing/ Information Propagation). Our second exam-
ple concerns a viral marketing/ information propagation problem over a social network. The
network is represented as a weighted directed graph, where the weight of each directed edge rep-
resents the edge “activation probability” (i.e., the probability that information can propagate
through the edge). Different from Example 6.1, we assume that the edge activation probabilities
are unknown, and need to be learned online. Now suppose that we want to promote a series
of products to (a fraction of) the network. For each product, we choose to adaptively give a
few samples for free to a subset of people, each based on the observed influence in the previous
rounds. Our goal is to design on online adaptive strategy for choosing which node to target, so
that we can influence a certain fraction of the network, while minimizing the budget spent on
advertising.

In this example, the reward is the total number (or fraction) of nodes influenced by
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targeting a subset of nodes. Due to lack of knowledge of the diffusion model, we
cannot directly compute the expected influence of a node in the same way we do for
Example 6.1 in the offline setting. We have to give away more products to learn the
weight of the graph. Analogously to Example 7.1, we need to trade-off exploration (i.e.,
giving away products to uncertain, possibly low-influence nodes to learn the weight of
its incident edges) and exploitation (i.e., targeting highly influential nodes to maximally
spread the information).

7.1.2 General Problem Statement

Following the notations defined in §2.1, we use V = {1, . . . , t} to denote the set of tests,
use XV to denote the random outcomes of the tests in V , and use xV to denote a specific
realization of XV . Given a policy π, we use S(π, xV ) to denote the set of tests (and their
outcomes) seen by π under realization xV . In this chapter, we assume that tests have
unit cost, i.e., ∀v ∈ V we have c(v) = 1, and we use f (xA) to denote the value or the
reward of the observation xA.

Under the online setting, the prior distribution P := P [XV ] is unknown, and hence
we have to select tests based on some estimation of P. Let P̃` denote the estimated
distribution over XV at the start of the `th epoch, and π` denote the associated adaptive
policy we are running. In principle, we want to design an adaptive policy for each epoch
that is competitive with the hindsight-optimal policy that knows the true distribution.
We define the regret over the `th epoch as

∆̃` = F(π∗)− F(π`),

where F(π) , ExV∼P[ f (S(π, xV ))] = ∑xV P(xV ) f (S(π, xV )) denotes the expected
value of policy π under the true distribution P, and π∗ = arg maxπ F(π∗) denotes
the optimal policy which achieves the best value under the true distribution P.

Suppose we have a fixed budget τ for each epoch. We define the accumulated regret
incurred by running {π1, . . . , πk} over k epochs as

Regret(k, τ) =
k

∑
`=1

∆̃`. (7.1.1)

We will assess the algorithm performance in terms of the expected accumulated regret.

164



7.2. Online Learning for Optimizing VoI

7.2 Online Learning for Optimizing VoI

We employ a posterior sampling strategy [ORVR13], described as follows. Suppose that
initially we have access to a prior over the model parameters. For example, in the trou-
bleshooting application, we maintain Beta prior distributions B(α,β) on the parameters
% := [$ij]t×m of the conditional probabilities, where recall $ij = P

[
Xi = 1 | θj

]
, and t

(resp. m) represents the number of tests (resp. root-causes). That is, ∀i ∈ [t], j ∈ [s],
we have $ij ∼ B(αij, βij) where αij, βij depend on historical data. Similarly, for viral
marketing, % corresponds to the vector of edge activation weights, and we can assume
a Beta prior on each element of %.

At the start of epoch `, we sample %(`) from the posterior distribution over the parame-
ters, conditioned on the observation history Obs`−1, and obtain P̃`. We then run the
adaptive greedy policy π` (i.e., Algorithm 1) over epoch ` according to the sampled
distribution P̃`. When the epoch is over, we obtain observations Obs`, based on which
we update the posterior, and continue. We call this algorithm OnlineVoI, and provide
the pseudocode in Algorithm 10.

Algorithm 10: The online framework for adaptive information acquisition

1 Input: Prior P [%] over the parameters % of distribution P [Xv]; reward function f ;
begin

2 foreach ` = 1, 2, . . . do
3 Sample %(`) ∼ P [% | Obs`−1] and obtain distribution P̃`;
4 Call the adaptive greedy framework with ( f , P̃`) to run π`;
5 Add the set of observations to Obs`;

end

end

Our online learning strategy can be interpreted as Thompson sampling across multiple
epochs of interaction. Several recent empirical simulations [CL11; Gra+10; Sco10]
and theoretical studies [AG12; BL13b; KKM12] have demonstrated the effectiveness
of Thompson sampling in different settings. The classical usage of Thompson sam-
pling [Tho33] suggests to choose an action according to its probability of being optimal,
whereas, in our model, an “action” can be interpreted as the set of tests performed in
one epoch.

165



Chapter 7. Unknown parameters: Converting Offline to Online

7.3 Theoretical Analysis

To make our analysis concrete, in the following, we focus on the online variant of
the decision-making problem discussed in §4. This problem setting captures the
troubleshooting application (Example 7.1). For this specific problem, we instantiate the
generic OnlineVoI algorithm as below.

7.3.1 OnlineVoI for Decision Making

Algorithm 11: Online adaptive information acquisition for decision making

1 Input: αij, βij parameters of Beta distributions, prior over root-causes P[Θ], ;
begin

2 foreach ` = 1, 2, . . . do
3 A ← ∅, xA ← ∅, r ← NaN;

4 Draw %(`) = {$(`)ij ∼ B(α(`)ij , β
(`)
ij )}, and obtain P̃`;

5 Call the submodular surrogate-based greedy framework (Algorithm 3) to
engage epoch ` with policy π`, and obtain a sequence of (test, outcome)
pairs xA;

6 Observe the root-cause for epoch `, with index ϑ;
foreach (v, xv) ∈ xA do

7 Update α
(`)
vϑ , β

(`)
vϑ to get α

(`+1)
vϑ , β

(`+1)
vϑ ;

end

end

end

For simplicity, we assume that the prior P[Θ] over root-causes is given. In principle,
we can drop this assumption, and instead assume a prior over the parameters of P[Θ]

so that we can sample from it, similarly as how we sample % ∼ B(α,β).

7.3.2 Regret Bound for OnlineVoI

Suppose we have drawn %(`) to obtain distribution P̃` for epoch `. To compute π`

(i.e., to run Algorithm 3 at Line 5 of Algorithm 11), we first need to run the dynamic
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hypothesis enumeration algorithm (c.f. §4.4) to generate samples H̃` that covers 1− η

fraction of the probability mass of the hypothesis space, and construct a DRD problem
instance on top of H̃`. Denote the optimal policy with respect to distribution P̃` by π∗P̃`

.
By the definition of the DRD/ NVOI-NMU problem (Problem 4.1.2), we know that the
value of all feasible policies for Problem 4.1.2 is at most ε away from the optimal value.

W.l.o.g, we assume in this section that ε = 0, and that decision regions in the DRD
problem are disjoint. Let p̃min,` = minh∈H̃`

P̃(h)
1−η . Then, Theorem 4.15 implies that with

probability at least 1− η, running π` (i.e., Algorithm 3) at epoch ` achieves the same
value of information with π∗P̃`

, with at most (2 ln(1/ p̃min,`) + 1) times of the minimal
(worst-case) cost.

Now suppose we run Algorithm 11 for k epochs. Define c∗ , max`,xV |S(π∗P̃` , xV )| to be

the worst-case cost of the optimal policies over any of the k epochs, and δ , min` p̃min,`

to be the minimal probability of any sampled hypothesis. We establish the following
bound on the expected accumulated regret of running Algorithm 11:

Theorem 7.3. Fix η ∈ (0, 1). Let τ = (2 ln(1/δ) + 1) c∗ be the length of each epoch, where
δ and c∗ are defined as above. Then, running Algorithm 11 over k epochs achieves expected
accumulated regret

E[Regret(k, τ)] = O
(

τS
√

tkτ log(Stkτ) + kη

)
, (7.3.1)

where S is the total number of possible realizations of τ tests, and t is the number of tests.

We defer the proof of Theorem 7.3 to §A.5. The main idea behind the proof is to view
the DRD/ NVOI-NMU problem as optimizing a (finite horizon) Partially Observable
Markov Decision Process (POMDP) over repeated episodes of a fixed horizon τ. The
parameter S in the regret bound corresponds to the number of (reachable) belief states
of the POMDP. Each belief state in an episode represents a (sub-) set of selected tests
and observed outcome of each test. Once we have established this connection, we can
interpret the online learning problem as a reinforcement learning problem via posterior
sampling, in a similar way to Osband, Russo, and Van Roy [ORVR13].

Remark 7.4. A conservative bound on S in 2(
t
τ), which is doubly-exponential in the time

horizon of each episode τ. However, in practice, the number of reachable belief states
is limited by the structure of the problem (e.g., configuration of the CPTs), and hence
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could be far smaller. In any case, (by applying Markov’s inequality) Eq. (7.3.1) implies
that

Regret(k, τ)

kτ
→ η

τ
.

In words, the regret of Algorithm 11 in the limit (as k→ ∞) is bounded by η/τ.

Remark 7.5. If p̃min,` is too small (and hence δ is too small), we can use a similar trick
proposed by Kosaraju, Przytycka, and Borgstrom [KPB99b] (as discussed in §4.2.2 for
improving the bound for GBS) to run the greedy algorithm on a modified prior P̃′ over
H̃`, i.e., by setting P̃′(h) ∝ max

{
P̃(h)
1−η , 1

|H̃`|2
}

. In these cases, a lower bound on p̃min,` is

max
{

minh∈H̃`

P̃(h)
1−η , 1

|H̃`|2
}

, which consequently puts a lower bound on δ.

Remark 7.6. As mentioned in §2.4, one can view the general class of adaptive information
acquisition problems as probabilistic planning problems. Hence, similar analysis also
applies to other problems (e.g., the online viral marketing problem of Example 7.2)
which involves solving adaptive submodular minimum cost coverage problem in each
epoch.

7.4 Experimental Results

Dataset and experimental setup. To keep this chapter practically grounded, we
evaluate our online framework on an online interactive troubleshooting application. We
conduct experiments on the same experimental platform as described in §4.6.4, where
we have evaluated the offline algorithms. Recall that there are a total number of 1100
root-causes and 950 binary tests in our dataset. To create an initial distribution over the
conditional probabilities %, we set Beta priors B(αij, βij) on %ij. The ratio αij/βij is set
to be roughly proportional to the ratio between the number of (xi = 1, θj) pairs and
the number of (xi = 0, θj) pairs in the training set. For robustness, we further inject
noise into these estimates by flipping the zero entries of αij’s and βij’s with some small
probability. In our experiments, we assume that the prior distribution over root-causes
is given, which we assume to be uniform.

We evaluate Algorithm 11 over 100,000 simulated test scenarios. Each test scenario
corresponds to a root-cause θ and an underlying hypothesis h. As with §4.6.4, our goal
is to identify the root-cause, meaning that each root-cause θ corresponds a decision y.
We accept a “give-up” decision region, and therefore the resulting decision regions are
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disjoint (intuitively, hypotheses in the intersection between multiple decision regions
are assigned to the “give-up” decision). We adopt the same utility functions u(θ, y) as
used for the offline setting to construct regions for solving the DRD problems, i.e.,

u(θ, y) =





0, if y is “give-up”;

1, if y matches θ, i.e., y is the correct decision

−19, if y ∈ supp(Θ) ∧ y 6= θ, i.e., y corresponds to a wrong root-cause

We compare with the same set of baseline criteria as used in §4.6.4, namely the
Information Gain (IG) criterion, and the Uncertainty Sampling (US criterion.

Results. Instead of keeping a fixed budget for each test scenario (i.e., epoch), we set a
maximal budget for each test scenario, and keep running the policy until it identifies a
decision region or exceeds the budget. At the end of epoch `, we report the average
label complexity (i.e., the accumulated means of the number of questions asked over `
epochs) and the average utility (i.e., the accumulated means of the utility over ` epochs).
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Figure 7.2: Results: Average cost of online interactive troubleshooting.

Fig. 7.2 and Fig. 7.3 demonstrate the behavior of different selection criteria. In “EC2

MAP”, we run Algorithm 11, but set % to be their MAP estimators at Line 4. We can
see its cost is much higher as it does not encourage exploration as much as the other
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Figure 7.3: Results: Average utility of online interactive troubleshooting.

online methods. In “EC2 static”, we run EC2 only based on the initial sample of CPT
without any updates (i.e., skipping Line 7 of Algorithm 11). In the “full info” versions
of the algorithms, the ground truth % is used, while in the “online” versions, we use
Algorithm 11 to update %. Two notable observations are in order: first, with our online
framework, the average utility (a.k.a reward) of all algorithms approach the optimal
utility over time. Second, the EC2 variants consistently outperform the alternatives in
terms of query complexity, which is consistent with the results in the offline setting
(i.e., assuming we have full knowledge of the model parameters).

7.5 Summary

We looked into a practical setting for the optimal VoI problem, where the probabilistic
model and prior distribution over hypotheses are unknown. To address this issue,
we proposed an efficient, principled online learning framework, and proved that it
attains low accumulated regret in the long run. We demonstrated promising empirical
performance of our framework on a real-world troubleshooting platform. Our results
suggest that the “posterior sampling”-based online learning framework can properly
trade-off exploration and exploitation, and could be valuable for building real-world
online adaptive information acquisition systems.
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8
Conclusion and Outlook

In this dissertation, we have investigated the fundamental problem of adaptive infor-
mation acquisition and decision making under uncertainty. We posed the following
question:

How can we efficiently, adaptively acquire information under uncertain, noisy en-
vironment, so that we can attain the maximal value of information with the mini-
mal cost?

Previous theoretical results for adaptive information gathering are mostly limited to
strong modeling assumptions that are not tailored to real-world applications, while
most practical algorithms rely on greedy heuristics that have no performance guarantees.
To ease the tension between theory and practice, we have developed principled and
practical algorithms for a class of adaptive information acquisition problems. In
particular, we have considered new applications (§4, §5), extensions (§6, §7), and
alternatives (§3, §4) of the adaptive submodular optimization framework [GK11b], to
handle more complex constraints in real-world problems.

While these results are encouraging, they also raise open questions. In this chapter,
we highlight the key contributions presented in this dissertation and outline a few
promising directions for future work.
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8.1 Summary

In a nutshell, this dissertation aims to develop new theoretical insights for complex
adaptive information acquisition problems, and implement these ideas on challenging
real-world applications. We have looked into several theoretical variants of the problem,
where it is challenging to characterize the value of information due to complex con-
straints and modeling assumptions, such as indirect information (§4), noisy feedback
(§3,§4), delayed feedback in parallel systems (§6), and incomplete knowledge about the
model (§7). We briefly elaborate on these points and summarize our key contributions
below.

8.1.1 Adaptive Information Acquisition: A Theoretical Perspective

Submodular surrogates. The key analytical tool that motivates our research is (adap-
tive) submodularity. If we assume noise-free observations, many adaptive optimization
problems enjoy such structural property, which allows for efficient and provably near-
optimal solutions – this is particularly noteworthy since finding the optimal solution is
provably hard. When a given objective function is not submodular (e.g., the decision-
making problem we considered in §4), unfortunately, the greedy solution might provide
arbitrarily poor solutions.

Inspired by the success of convex optimization in the statistical learning literature,
we proposed adaptive submodular surrogates and demonstrated how to convert a
non-submodular problem into submodular one in §4. Our key idea is to design a
submodular surrogate function that properly captures the structure of the problem
while being aligned with the target objective to be optimized. In this way, optimizing
the surrogate has the same effect with optimizing the original objective, and a greedy
algorithm provides a near-optimal solution.

Beyond adaptive submodularity. As a featuring component of most practical infor-
mation acquisition problems, uncertainty is often an inseparable part of our models and
observations. Understanding the dynamics of uncertainty plays a decisive role in the
analysis of complex adaptive systems. In the presence of noisy observations, it is not
clear how to relate an (adaptive submodular) surrogate to the original objective function
(e.g., the reduction in entropy (§3), or the error probability (§4)), as they often do not
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share the same optimality condition. Therefore, the adaptive submodular optimization
framework is no longer (directly) applicable.

Instead of seeking submodular surrogates for solving those noisy problems, our ap-
proach combines theoretical insights behind adaptive submodular optimization and
information theory (e.g., by using information-theoretic objectives (§3) and auxiliary
functions (§4)) to formulate and reason about uncertainty. Even though our surrogate
functions are no longer adaptive submodular, they satisfy a similar “approximately”
diminishing returns condition, which allows us to derive approximation guarantees
for efficient greedy algorithms. Our theoretical insight allows us to develop general,
robust and practical algorithms that work well when the observations are noisy.

Batch-mode information acquisition and the price of parallelism. Besides the se-
quential setting, we also studied the more general “partially closed-loop” setting, where
batches of tests are performed in parallel. The main theoretical questions addressed in
§6 are how the best batch-mode policy compares to the best fully sequential policy, and
(consequently) how to design efficient algorithms that perform provably well.

A natural way to quantify the “price of parallelism” is by the adaptivity gap. It is known
that when test outcomes are independent, the adaptivity gap is bounded irrespective of
the cardinality constraint. We looked into the more general setting and proved rigorous
upper bounds for the case where tests outcomes can be dependent. We proved that a
simple greedy policy is competitive with the optimal batch-mode policy. Furthermore,
based on our results on the adaptivity gap, we provided trade-offs between the cost
of our algorithm and the degree of parallelism. Our results imply that under certain
assumptions on the underlying distribution and cost model, the greedy policy can be
competitive with the optimal fully sequential policy.

Dealing with unknown parameters. We further considered an online extension
of the adaptive greedy optimization framework (§7), where we assumed an un-
known/incomplete the prior on test outcomes. We proposed to convert the offline
adaptive algorithms to the online setting via posterior sampling, and proved an upper
bound on the regret of the resulting online algorithms. The analysis applies as long as
(1) the “reward” of each epoch can be measured by an adaptive monotone submodular
function, and (2) in each session we are solving an adaptive submodular minimum cost
coverage problem.
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8.1.2 Applications Relevant to this Dissertation

From a practical standpoint, we have developed several real-world applications that fit
well under our theoretical umbrella. In this section, we highlight a few:

Active touch-based localization on a robotic platform. One of the applications we
have investigated is touch-based localization, which was developed to showcase our
submodular surrogate-based optimization framework in §4. We have collaborated with
researchers from the Robotics Institute at Carnegie Mellon University and implemented
the HEC and DiRECt algorithms on a real robotic platform. We demonstrated both
our algorithms on a robot manipulation task, where a robotic arm was programmed
to localize the open button of a microwave oven. We vertically compared DiRECt
against HEC, and showed that DiRECt achieved the state-of-the-art performance, in
both computational complexity and query complexity.

Active object detection for biodiversity monitoring. In §5, we investigated active
object detection, where an active learner needs to interact with domain experts till it
identifies all object instances. We have collaborated with ecologists from the applied
ecology department from ETH Zurich and the Liverpool John Moores University, who
launched conservation drones to take high-quality photographs of wildlife habitats, in
order to obtain accurate and timely data on the wildlife distribution in the surveyed area.
To avoid the costly process of having a human expert going through all the images, we
have built an active detection system based on ActDet. Although the communication
from human expert to the learner is a simple binary feedback, our results imply that
by utilizing ActDet, one can already benefit from including human-in-the-loop to
substantially improve the state-of-the-art performance for object detection.

Online interactive troubleshooting. We have worked on an interactive troubleshoot-
ing application, based on real-world data collected from customer service center agents,
in collaboration with researchers from Xerox Research Center Europe. We implemented
the hypothesis enumeration algorithm from §4 for practical concerns and integrated it
with the posterior sampling framework from §7. We demonstrated that the submodu-
lar surrogate-based offline adaptive algorithm, integrated into the online framework
achieves low regret.
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8.2 Open Problems and Future Work

We now discuss some open problems and propose a few directions for future work.

8.2.1 Dealing with More Complex Constraints

Adaptive information acquisition with non-modular cost In this dissertation, we
mostly consider the cost function to be additive/ modular, and most of our analysis and
algorithms are designed specific to the modular cost setting. In §6, we have brought up
a batch-mode variant where cost is a submodular function of a batch of tests, e.g., due
to shared cost and shared resources. Although we have discussed the performance
of BatchGreedy under a specific submodular cost function, we did not design the
greedy framework in the first place to handle the submodular cost. Furthermore, there
are many other practical cost functions that are supermodular. Following this thread,
an interesting question would be, can we design algorithms that are more tailored to
non-modular cost functions?

Adaptive information acquisition with estimated prior In §7, we studied the online
setting and provided some preliminary results on the performance of a simple posterior-
based algorithm. Note that in our current regret bound, the horizon of an epoch is
a function of the worst-case cost of the optimal policy that solves the Optimal VoI
problem in each epoch – this could potentially be huge, in which cases our bound
becomes trivial. To make the bound more realistic, it makes sense to compare with
the optimal policy that only solves the Optimal VoI with high probability, similarly with
what we have discussed in §4.5. One interesting future work along this line is to
understand how the noise-resilient algorithms, such as ECED perform with estimated
prior?

Bayesian active learning with delayed feedback A more general problem that en-
closes the batch-mode setting is the setting with delayed feedback. For example, in
medical diagnosis, a doctor may perform some medical tests on a patient, but the
results may only be revealed minutes, hours or even days later. As a second example,
consider an active learning application where multiple labeling experts are available,
but each expert needs some processing time to return a label. In both scenarios, we
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aim to find the optimal testing policy (e.g., which tests to evaluate next, or which data
instance to label and which expert to ask), to learn the underlying hypothesis (e.g., the
root-cause of the patient’s symptoms for medical diagnosis, or the optimal classifier for
active learning) with the minimal cost.

Note in standard sequential active learning, the set of observations received at time
step ` is a singleton. In the delayed model, however, the feedback that concerns the test
at time ` is received at the end of the period `+ τ, i.e., it is delayed by τ time steps.
Note that τ ≡ 0 corresponds to the non-delayed case.

8.2.2 Beyond the Adaptive Information Acquisition Framework

We now briefly discuss more general adaptive systems that require intelligent in-
teraction with the environment/human, which go beyond the adaptive information
acquisition problem formalized in this dissertation. We call the general class of prob-
lems interactive machine learning.

Dealing with complex interactions in interactive machine learning. In this disser-
tation, we considered a basic interaction model for adaptive information acquisition,
where the adaptive system/ learner proposed a test/ query, observe its outcome, and
adapt to the observation. Interestingly, in real-world, for the general problem of in-
teractive machine learning (IML), we could have much richer classes of interactions. To
maximally utilize the bandwidth of the communication channel, it is important to
make use of not only the corrective feedback (e.g., a “yes” or “no” answer), but also the
explanations that may guide the algorithms for more efficient learning.

The first question comes along this line is, what forms might a query take? It is natural
to think about active learning algorithms that can formulate queries in the language of
rules, advice or explanations, in addition to simple labels for data points. There has
been considerable interest in recent years in incorporating human domain knowledge
into active learning algorithms. A follow-up question is, under what circumstances do
we still have tractable near-optimal solutions?

Active learning of structured hypotheses from explanatory feedback. Most real-
world applications are structured, in the sense that they are composed of multiple
correlated random variables. For example, in computer vision, we might want to
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predict the semantic category of each pixel; in natural language processing, we might
be interested in parsing sentences syntactically. In the supervised learning setting, we
assume that one has full access to the training set, i.e., all input data and their fully
labeled structured output. The learning problem can then be formalized as find the
maximal likelihood estimators for the model parameters, e.g., the weights of a log-linear
model [Joa+09]. In the active learning setting, however, we are only given a subset of
training examples, with (possibly partial) labels in the structured output space. Due
to its inherent computational difficulties (as we have to deal with exponentially sized
output spaces), active learning has been much less understood for structured prediction
tasks.

Explanatory feedback often carries implicit structural information about the output
labels; hence incorporating the explanatory feedback may dramatically reduce the
uncertainty of the output space, making it feasible to analyze active learning for such
complex hypotheses. As an example, consider a holistic scene understanding task in
computer vision, where a learner queries the label of an image segment. Rather than
return the partial label “tree”, the domain expert may further provide support sentence
s: “because it appears above the ground and below the sky.” A fundamental challenge of
including s is that the complexity of the problem increases by orders of magnitude.
Therefore, we need to develop new algorithms for exploiting such structural information
of explanatory feedback.

Query elicitation: interleaving active learning with machine teaching. In interac-
tive, interpretable machine learning systems, learning and teaching are reciprocal and
tightly coupled. On the one hand, the system is required to intelligently issue queries
that are informative for learning complex hypotheses; on the other hand, the learner
ought to be clear about what it means by the proposed queries, by providing additional
explanations that ensure interpretability. This motivates us to weave together techniques
developed for both active learning (i.e., in proposing the query) and machine teaching
[Zhu15] (i.e., in generating the explanation of a query – in other words, the learner also
needs to “teach” the domain expert why it issued the query). An interesting future work
is to develop a macro framework that jointly optimizes the label complexity and the
model interpretability. It also provides the opportunity to explore structured machine
teaching settings that unify prior work on structured prediction and machine teaching,
which has thus far focused on extremely simple concept classes.
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Appendix A. Proofs

A.1 Proofs from Chapter 3

A.1.1 Proof of Lemma 3.7:

Relating I (π; Y) to pv,max

Lemma A.1 (Long version of Lemma 3.7). Consider random variables U and V where U
takes values over the set [t] with distributions p and V takes values over [t′] with distribution
p′. We think of p (resp. p′) as a row vector with size t (resp. t′) which sums up to one.
Furthermore, assume that p′ = pQ where Q = [qi,j]t×t′ is a stochastic matrix and qi,j =

P [V = j | U = i], for i ∈ [t] and j ∈ [t′]. Let Q1, Q2, · · · , Qt denote the rows of Q and define
the minimum distance of Q as

S =
(

min
i,j∈[t]:i 6=j

|Qi −Qj|TV

)2
.

Also, define pmax = maxi∈[t] pi and umax = maxi∈[t] pi(1− pi). Then, we have

1. I (U; V) ≥ Sumax.

2. I (U; V) ≥ 1
2 S(1− pmax).

3. If I (U; V) ≤ θS, then we have pmax ≥ 1− 2θ. Also, if θ ≤ 1
4 , then pmax ≥ 1+

√
1−4θ
2 .

Proof. Let p = [pi] and p′ = [p′i]. Using the introduced notation, we have P [U = i, V = j] =
piqi,j. We thus can write

I (U; V) =
t

∑
i=1

t′

∑
j=1

piqi,j log
piqi,j

pi p′j

=
t

∑
i=1

pi

t′

∑
j=1

qi,j log
qi,j

p′j

=
t

∑
i=1

piDKL(Qi||p′)

≥ 2
t

∑
i=1

pi|Qi − p′|2TV, (A.1.1)

where the last step is due to Pinsker’s inequality [CK11, p 44].
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For any j ∈ [t] we can write

t

∑
i=1

pi|Qi − p′|2TV = pj|Qj − p′|2TV + ∑
i:i 6=j

pi|Qi − p′|2TV

≥ (1− pj)pj|Qj − p′|2TV + pj ∑
i:i 6=j

pi|Qi − p′|2TV

= ∑
i:i 6=j

pj pi|Qj − p′|2TV + ∑
i:i 6=j

pj pi|Qi − p′|2TV

= ∑
i:i 6=j

pj pi(|Qj − p′|2TV + |Qi − p′|2TV)

≥ ∑
i:i 6=j

pj pi
(|Qj − p′|TV + |Qi − p′|TV)

2

2

By applying the triangular inequality for total variation distances, we obtain

t

∑
i=1

pi|Qi − p′|2TV

(a)
≥ ∑

i:i 6=j
pj pi
|Qj −Qj|2TV

2

≥ ∑
i:i 6=j

pj pi
S
2

= pj(1− pj)
S
2

. (A.1.2)

The proof of part (1) is then complete by combining (A.1.1) and (A.1.2).

For the second part of the lemma, assume w.l.o.g that t = 2r + 1 and p1 ≥ p2 ≥ · · · ≥ pt

(if t is even we can always let t← t + 1 and let pt = 0).

We can then write
t

∑
i=1

pi|Qi − p′|2TV ≥
r

∑
j=1

{
p2j−1|Q2j−1 − p′|2TV + p2j|Q2j − p′|2TV

}

≥
r

∑
j=1

p2j

(
|Q2j−1 − p′|2TV + |Q2j − p′|2TV

)

≥
r

∑
j=1

p2j

(
|Q2j−1 − p′|TV + |Q2j − p′|TV)

)2

2

By applying the triangular inequality for total variation distances, we obtain

t

∑
i=1

pi|Qi − p′|2TV ≥
r

∑
j=1

p2j
|Q2j−1 −Q2j|2TV

2
≥ S

2

r

∑
j=1

p2j
(a)
≥ S

4
(1− p1).
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Here, step (a) follows from the fact that when pi’s are decreasing, and we thus have

∑s
j=1 p2j ≥ 1−p1

2 . Part 2 is now proven by using the above derivation and (A.1.1).

Part 3 simply follows from the fact that in the assumption I (U; V) ≤ θS
4 holds, then by

part 2 we have pmax ≥ 1− 2θ. Also, if θ ≤ 1/4, then pmax ≥ 1/2 and from part 1 we
get pmax(1− pmax) ≤ θ and putting the two together we get the result.

A.1.2 Proof of Lemma 3.8:

Lower Bound the Probability of the Event Λ

. . .

. . .

. . .
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∆
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t,1

Dv1 = bv1 bvt
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bv1,tDv1,1 = bv1,1

Level 1

Level 2

Figure A.1: A two-stage decision tree representation for (stochastic) policy π(2).

Proof of Lemma 3.8. Let us illustrate the idea by first assuming that π has length two
(see Figure A.1). Afterwards we prove the statement for π with an arbitrary length
k. Recall that we consider randomized policies too. In the very beginning, when no
observations have been made, π can choose any of the possible t tests v1, · · · , vt ∈ [t].
We thus assume that π chooses vi with probability pπ

i . Furthermore, the choice of vi

clearly does not reveal any information about Y (because we only talk about the choice
and hence no observations have been done so far). Let us define

Λr = {(Dv1 = bv1) ∧ (Dv2 = bv2) ∧ · · · ∧ (Dvr = bvr)},

to be the event that the deterministic part of the first r tests that π has picked all have
the most-likely outcome. Once π chooses its first test (let’s say v1), the event Λ1 takes
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place only if the output of Dv1 is precisely equal to bv1 . Hence, in Figure A.1, to find
P [Λ1] we need to add up the probabilities of the blue paths up to level 1. As a result,

P [Λ1] =
t

∑
i=1

pπ
i P [Dvi = bvi ]

≥
t

∑
i=1

pπ
i β = β.

Now, let us see what happens when π selects its second test. For this, assume for
simplicity that the first choice of π was v1 and the output of Dv1 is indeed bv1 (i.e.,
we are standing at point A on the tree depicted in Figure A.1). At this moment, the
noise affects the deterministic outcome of v1 (which we have assumed to be bv1) and
hence π observes a noisy version of bv1 . Based on this observation, π selects a new test
(which might be a randomized selection). Let us assume that this time π selects the
i-th test with probability pπ

1,i. An important point to note here is that conditioned on
the fact that Dv1 = bv1 (i.e. point A on the tree), the new choice of π does not give any
new information about Y. This is because conditioned on Dv1 = bv1 , the choice of π is
only a function of bv1 and the noise and possibly some other random variables (used to
randomise the policy) that are independent of Y given Dv1 = bv1 . Hence, we can write

P [Λ2 | Dv1 = bv1 ] =
t

∑
i=1

pπ
1,iP [Dvi = bvi | Dv1 = bv1 ]

Indeed, the above argument is valid if π had chosen any generic test vi (instead of v1)
as its first test. The value P [Λ2] can now be found by summing up the probabilities of
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all the points at level 2 that are the end-point of a blue path. We have

P [Λ2] =
t

∑
i=1

pπ
i P [Dvi = bvi ]P [Λ2 | Dvi = bvi ]

=
t

∑
i,j=1

pπ
i pπ

i,jP [Dvi = bvi ]P
[

Dvj = bvj | Dvi = bvi

]

=
t

∑
i,j=1

pπ
i pπ

i,jP
[

Dvj = bvj , Dvi = bvi

]

(a)
≥

t

∑
i,j=1

pπ
i pπ

i,j(1− 2(1− β))

≥ (1− 2(1− β))
t

∑
i=1

pπ
i

t

∑
j=1

pπ
i,j

= 1− 2(1− β),

where (a) follows from the Union bound.

path yk :=
n
(vp,1, Dvp,1 = bvp,1), . . . , (vp,k, Dvp,k = bvp,k )

o

Level 1

Level k

pp
1vp,1

vp,2

vp,k

bvp,k

bvp,1

bvp,2

pp
2

⇡

...

;

Figure A.2: Event Λk in the policy tree.

Now consider the general case where π has length k. As explained before, the event Λ
happens only on the “good paths” (i.e., the paths that event Λ happens, as depicted in
blue in Figure A.2) of the policy tree. Define path

ψi :=
{
(vπ,1, Dvπ,1 = bvπ,1), . . . , (vπ,i, Dvπ,i = bvπ,i)

}
.
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We then have

P [Λk] = ∑
ψk

P
[
(vπ,1, Dvπ,1 = bvπ,1), . . . , (vπ,k, Dvπ,k = bvπ,k)

]

= ∑
ψk

P [vπ,1]P
[
Dvπ,1 = bvπ,1

] k−1

∏
i=1

P [(] vπ,i+1 | ψi)×

k−1

∏
i=1

P
[
Dvπ,i+1 = bvπ,i+1 | Dvπ,1 = bvπ,1 , . . . , Dvπ,i = bvπ,i

]

= ∑
ψk

P
[
Dvπ,1 = bvπ,1 , . . . , Dvπ,k = bvπ,k

]
×P [vπ,1]

k−1

∏
i=1

P [vπ,i+1 | ψi]

Since for each vπ,i it holds that P
[
Dvπ,i = bvπ,i

]
≥ β, applying the union bound we

obtain

P
[
Dvπ,1 = bvπ,1 , . . . , Dvπ,k = bvπ,k

]
≥ 1− k(1− β).

Thus,

P [Λk] ≥ (1− k(1− β))∑
ψk

P [vπ,1]
k−1

∏
i=1

P [vπ,i+1 | ψi]

= (1− k(1− β)) ∑
ψk−1

P [vπ,1]
k−2

∏
i=1

P [vπ,i+1 | ψi]

���
���

���
���

�:1
∑

v∈[t]
P [vπ,k = v | ψk−1]

= (1− k(1− β)) ∑
ψk−2

P [vπ,1]
k−3

∏
i=1

P [vπ,i+1 | ψi]

��
���

���
���

���:
1

∑
v∈[t]

P [vπ,k−1 = v | ψk−2]

...

= (1− k(1− β))∑
ψ2

P [vπ,1]P [vπ,2 | ψ1]

���
���

���
���:1

∑
v∈[t]

P [vπ,3 = v | ψ2]

= (1− k(1− β))∑
ψ1

P [vπ,1]

���
���

���
���:1

∑
v∈[t]

P [vπ,2 = v | ψ1]

= (1− k(1− β))

Lemma A.2. Consider a distribution p(·) on set U ′ with |U ′| = n. For a subset U ⊆ U ′ we
have

∑
u∈U

pu log
1
pu
≥H (p)− (1− p(U )) log n + (1− p(U )) log(1− p(U )). (A.1.3)
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Proof. Let U{ , U ′ \ U be the complement of set U . We have

H (p)− ∑
u∈U

pu log
1
pu

= ∑
u∈U{

pu log
1
pu

= p(U{) ∑
u∈U{

pu

p(U{)
log

p(U{)

pu
− p(U{) log p(U{)

(a)
≤ p(U{) log n− p(U{) log p(U{)

= (1− p(U )) log n− (1− p(U )) log(1− p(U )),

where step (a) is due to the fact that the cardinality of the set U{ is at most n and thus
the entropy of any distribution on this set is less than log n.

A.1.3 Proof of Lemma 3.5 for n = 2

For n = 2 we have Y = Bernoulli(p). Assume w.l.o.g that p ≤ 1/2. Each Dv is a
deterministic function of Y. So Dv is itself a binary random variable. Now, there exists
v′ ∈ [t] such that I (Dv′ ; Y) > 0, otherwise any policy gains zero mutual information
and the result of Lemma 3.5 is trivial. We assume w.l.o.g that Dv′ = Y. By using
part 2 of Lemma A.1 we get that I (Xv′ ; Y) ≥ p Smin

2 . Note that H(Y) = H2 (p), where
H2 (x) , −x log x− (1− x) log(1− x). Also, it is easy to verify that for p ≤ 1/2 we
have H2 (p) ≤ −2p log p and also − log(H2 (p)) ≥ − log p

3 . We thus get that

I (Xv′ ; Y) ≥ Smin

12
H2 (p)

log 1/H2 (p)
. (A.1.4)

Now, note that any policy can have at most I (π, Y) ≤ H(Y) = H2 (p). Thus,
log(1/I (π, Y)) ≥ log(1/H2 (p)). As a result,

I (π, Y)
log(1/I (π, Y))

≤ H2 (p)
log(1/H2 (p))

. (A.1.5)

To get the result of Lemma 3.5, we assume two cases: (i) I (π, Y) ≤ 1
2 : in this

case log(1/I (π, Y)) ≥ 1 and by (A.1.4) and (A.1.5) we obtain that I (Xv′ ; Y) ≥
SminI(π,Y)

12 log(1/I(π,Y)) (ii) I (π, Y) > 1
2 which, by using H2 (p) > 1

2 , means that p > 0.1102

and thus p
H2(p) ≥ 1/6. In this case, we have I (Xv′ ; Y) ≥ p Smin

2 ≥ H2 (p) Smin
p

2H2(p) ≥
SminH2(p)

12 ≥ SminI(π;Y)
12 . Thus, form the two cases, we have proven that I (Xv′ ; Y) ≥

SminI(π;Y)
12 max{log n,log(1/I(π,Y))} for any policy π. This proves Lemma 3.5 for k ≥ 2. Note that
the result of Lemma 3.5 is trivially valid when k = 1.
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A.1.4 Proof of Lemma 3.10:

W.h.p. πMIS Picks Tests in V0

Proof of Lemma 3.10. The proof goes through the following steps:

Step 1. Consider 2T observable random variables X(0)
1 , X(0)

2 , . . . X(0)
2T from set XV0 . If

Smin = (1− 2ε)2 ≤ 1
256
√

log n(log log n)2 , for all integers r ≤ 2T, we claim

P


1

e
≤
(

1− ε

ε

)r−2 ∑r
i=1 x(0)i

≤ e


 ≥ 1− 2 exp

(
−2(log log n)2

)
, (A.1.6)

where x(0)i is the observed outcome of X(0)
i .

In the following, we prove the above inequality. By Hoeffding’s inequality, we have

P

[∣∣∣∣∣
r

∑
i=1

(1− 2x(0)i )− r(1− 2ε)

∣∣∣∣∣ ≥
√

r log log n

]
≤ 2 exp

(
−2(log log n)2

)

Therefore, with probability at least 1− 2 exp
(
−2(log log n)2), we have

(
1− ε

ε

)r−2 ∑r
i=1 x(0)i

≤
(

1− ε

ε

)r(1−2ε)+
√

r log log n

= e(ln 1−ε
ε ·r·(1−2ε)+

√
r ln 1−ε

ε ·log log n)

≤ e
(

4(1−2ε)2r+4
√

r(1−2ε)2 log log n
)

≤ e(4×2TSmin+4
√

2TSmin log log n)

In order for inequality
(

1−ε
ε

)r−2 ∑r
i=1 x(0)i ≤ e to hold, it suffices to ensure that

{
8TSmin ≤ 1

2

4
√

2TSmin log log n ≤ 1
2

From the first inequality we get Smin ≤ 1
32
√

log n
; from the second we get Smin ≤

1
256
√

log n(log log n)2 .

To show
(

1−ε
ε

)r−2 ∑r
i=1 x(0)i ≥ 1

e , we use

(
1− ε

ε

)r−2 ∑r
i=1 x(0)i

≥
(

1− ε

ε

)r(1−2ε)−√r log log n
= e(ln 1−ε

ε ·r·(1−2ε)−√r ln 1−ε
ε ·log log n),
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and it suffices to ensure that
√

r ln 1−ε
ε · log log n ≤ 1, which clearly holds when

Smin ≤ 1
256
√

log n(log log n)2 . From (A.1.6) and the union bound we get that

P


∀r ≤ 2T :

1
e
≤
(

1− ε

ε

)r−2 ∑r
i=1 x(0)i

≤ e


 ≥ 1− 4

√
log n exp

(
−2(log log n)2

)

Step 2. We now prove Lemma 3.10 by induction. Assume that Smin ≥ 2(10+2 log log n)
log n .

By equations (3.4.1),(3.4.2),(3.4.3), we know that the gain of any tests in Xt, t ∈
{1, . . . , T+ 1} is less that Smin. In the very beginning, I

(
X(0)

i ; Y
)
= (1−H2 (ε)) ≥ Smin,

so πMIS[2T] chooses a test from XV0 .

Step 3. Consider an integer r ≤ 2T and assume that greedy has so far picked tests

X(0)
1 , . . . , X(0)

r ∈ XV0 with outputs x(0)1 , . . . , x(0)r such that 1
e ≤

(
1−ε

ε

)r−2 ∑r
i=1 x(0)i ≤ e.

We denote the probability of the event y ∈ Y1 by p1 = P
[
y ∈ Y1 | x(0)1 , . . . , x(0)r

]
,

and similarly p0 = P
[
y ∈ Y0 | x(0)1 , . . . , x(0)r

]
. Then we have p1 + p0 = 1 and p1

p0
=

P
[

x(0)1 ,...,x(0)r |y∈Y1
]
P[y∈Y1]

P
[

x(0)1 ,...,x(0)r |y∈Y0
]
P[y∈Y0]

= (1−ε)∑r
i=1 x(0)i ε

r−∑r
i=1 x(0)i

ε∑r
i=1 x(0)i (1−ε)

r−∑r
i=1 x(0)i

=
(

ε
1−ε

)r−2 ∑r
i=1 x(0)i . Therefore, if 1

e ≤
(

1−ε
ε

)r−2 ∑r
i=1 x(0)i ≤ e, then p1, p0 ∈ [1

4 , 3
4 ]. Consider X(0)

i ∈ XV0 , and assume the

distribution on Di is a Bernoulli(p) with p ∈
[

1
4 , 1

2

]
, then

I
(

X(0)
i ; Y

)
= I

(
X(0)

i ; Di

)
= H2 (p(1− ε) + (1− p)ε)−H2 (ε)

=
∫ p(1−ε)+(1−p)ε

ε
H′2 (x) dx

≥ H′2 (ε) + H′2 (p(1− ε) + (1− p)ε)
2

(p(1− ε) + (1− p)ε− ε)

= p(1− 2ε)
log 1−ε

ε + log 1−p(1−2ε)−ε
p(1−2ε)+ε

2

≥ 1− 2ε

4

log 1−ε
ε + log

(
1 + 2(1−2ε)

1+2ε

)

2

≥ 1− 2ε

8

(
1− 2ε

1− ε
+ (1− 2ε)

)

≥ 3
8
(1− 2ε)2.
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That is, when p ∈ [1/4, 1/2], we have I
(

X(0)
i ; Y

)
≥ 3

8(1− 2ε)2 > 1
4 Smin >

10+2 log log n
2 log n .

Also, given the assumptions of step 3, we note that the elements in the set Y1 will always
have equal probability. Therefore, the tests of other types have at most information
twice as their gain in the very beginning where we have a uniform distribution on Y .
Therefore, the greedy policy will certainly choose a test among V0.

Finally, by combining Step 1-3, we finish the proof.
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A.2 Proofs from Chapter 4

A.2.1 Proof of Lemma 4.11:

Adaptive Submodularity of fDiRECt

In the following, we show that the function defined in Eq. (4.3.1) is strongly adaptive
monotone and adaptive submodular.

Proof of Lemma 4.11. We first show fDiRECt is strongly adaptively monotone: We know
that each individual f i

EC2 is strongly adaptively monotone. Moreover, the partial
derivative of fDiRECt w.r.t. each f i

EC2 is non-negative. Applying the chain rule of
derivatives, we know that fDiRECt is strongly adaptively monotone.

To proof adaptive submodularity, we need to prove that for all xA � xB and v ∈ V ,
it holds that ∆DiRECt(v | xA) ≥ ∆DiRECt(v | xB). First, we introduce several auxiliary
notations, as shown in Table A.1. Let sa(xA) = ∑i si,a(xA) be the number of hypotheses
in the current hypotheses space given xA and Xv = a, and sV (xA) = |H(xA)| be the
number of hypotheses that are consistent with the observation xA (see Table A.1 for a
list of notations used in this proof).

Table A.1: A reference table of auxiliary notations used for the proof of Lemma 4.11.

n |H(∅)|, the number of hypotheses in the initial version space.

sV (xA) |H(xA)|, the number of hypotheses consistent with the observation xA.

si(xA) |H(xA)∩Ryi |, the number of hypotheses in Ryi that are consistent with xA.

sa(xA) ∑i si,a(xA), the number of hypotheses in the current version space given xA
and Xv = a.

si,a(xA) |{h : h ∈ H(xA, Xv = a) ∩Ryi}|, the number of hypotheses in Ryi that are
consistent with the observation xA and Xv = a.

s(xA) the vector consisting of si,a(xA) for all i and a.

φ the expected marginal benefit of a test given some observations.

We can represent the marginal gain of fEC2 on each graph as a function φ(·) only
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depending on s(xA):

∆ fEC2 (v | xA) = φ(s(xA)) =
1
2 ∑

i 6=j
∑
a 6=b

si,a(xA) · sj,b(xA) + ∑
a

sa

sV
· 1

2 ∑
i 6=j

∑
b 6=a

si,b · sj,b

(A.2.1)

Now let sk,c be the number of hypotheses in auxiliary equivalence class k, which are
consistent with the observation Xv = c. Following the analysis of fEC2 by Golovin,
Krause, and Ray [GKR10a], we get ∂φ/∂sk,c ≥ 0 for any choice of k and c.

To show that ∆DiRECt(v | xA) = φ fDiRECt
(s(xA)) is monotone decreasing with more

observations, we need to show that for any k and c, it holds that ∂φ fDiRECt
(s(xA))/∂sk,c ≥

0. Denote the set A∪ {v} as A+ v. By the definition of ∆(v | xA), we know

∆DiRECt(v | xA)

=E

[(
1−

n

∏
i

(
1− f i

EC2(xA+v))
))
−
(

1−
n

∏
i

(
1− f i

EC2(xA)
))]

=E

[
(1− f 1

EC2(xA)) ·
n

∏
i 6=1

(
1− f i

EC2(xA)
)
− (1− f 1

EC2(xA+v)) ·
n

∏
i 6=1

(
1− f i

EC2(xA+v))
)]

(A.2.2)

We first show for the simple case, where there are only two regions, the objective f (2)EC
is adaptive submodular w.r.t. uniform priors. For discussion simplicity we drop the
normalization constants Qi from the analysis.

Define δi(xv | xA) = f i
EC2(xA+v) − f i

EC2(xA). If there are two regions, i.e., n = 2,
Eq (A.2.2) becomes

∆DiRECt(v | xA)

=E
[
(1− f 1

EC2(xA)) · (1− f 2
EC2(xA))− (1− f 1

EC2(xA+v)) · (1− f 2
EC2(xA+v))

]

=E
[

f 1
EC2(xA+v)− f 1

EC2(xA) + f 2
EC2(xA+v)− f 2

EC2(xA)

−
(

f 1
EC2(xA+v) f 2

EC2(xA+v)− f 1
EC2(xA) f 2

EC2(xA)
)]

=E
[
δ1(xv | xA) + δ2(xv | xA)− (δ1(xv | xA) f 2

EC2(xA+v) + δ2(xv | xA) f 1
EC2(xA)) | xA

]

=E
[
(1− f 1

EC2(xA))δ2(xv | xA) | xA
]
+ E

[
(1− f 2

EC2(xA+v))δ1(xv | xA) | xA
]

=
(
1− f 1

EC2(xA)
)
E [δ2(xv | xA) | xA] + E

[(
1− f 2

EC2(xA+v)
)
δ1(xv | xA) | xA

]
(A.2.3)
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For the first term on the R.H.S. of Eq. (A.2.3), we have
(
1− f 1

EC2(xA)
)
E [δ2(xv | xA) | xA] ≥

(
1− f 1

EC2(xB)
)
E [δ2(xv | xB) | xB] (A.2.4)

Let the second term be θ(s), and denote h(s) = 1− f 2
EC2(xA+v). In the following, we

will show that ∂θ(s)/∂sk,c ≥ 0 for all sk,c.

θ(s) = E [h(s)δ1(xv | xA) | xA]

= ∑
a

h(s)
sa

sV
· 1

2

{
∑
i 6=j

∑
b 6=d

si,b(xA) · sj,d(xA) + ∑
i 6=j

∑
b 6=a

si,b(xA) · sj,b(xA)

}

Taking the partial derivative of θ(s) w.r.t. sk,c, we have

∂θ(s)
∂sk,c

= ∑
a

∂h(s)
∂sk,c

· sa

sV
· 1

2

{
∑
i 6=j

∑
b 6=d

si,b(xA) · sj,d(xA) + ∑
i 6=j

∑
b 6=a

si,b(xA) · sj,b(xA)

}

+ ∑
a

h(s) · ∂

∂sk,c

{
sa

2nV
·∑

i 6=j
∑
b 6=d

si,b(xA) · sj,d(xA) +
sa

2nV
·∑

i 6=j
∑
b 6=a

si,b(xA) · sj,b(xA)

}

(A.2.5)

Since f 2
EC2(xA+v) is monotone decreasing w.r.t. sk,c, h(s) is monotone increasing, and

thus ∂h/∂sk,c ≥ 0. Therefore, the first term on the R.H.S. of Eq. (A.2.5) is nonnegative.

Let p = 1
2 ∑i 6=j,b 6=d si,bsj,d, and qa =

1
2 ∑i 6=j,b 6=a si,bsj,b. For simplicity we drop the depen-

dency of variables on xA. Then the second term on the R.H.S. of Eq. (A.2.5) is

∑
a

h(s) · ∂

∂sk,c

{
sa ·

1
sV
· p + sa ·

1
sV
· qa

}

=h(s) · ∂

∂sk,c

{
sc ·

1
sV
· p + sc ·

1
sV
· qc

}

︸ ︷︷ ︸
1

+ ∑
a 6=c

h(s) · ∂

∂sk,c

{
sa ·

1
sV
· p + sa ·

1
sV
· qa

}

︸ ︷︷ ︸
2

(A.2.6)

Expand term 1 to get

1 =
sc

sV
· ∂p

∂sk,c
+

p
sV
·
�
�
��7

1
∂sc

∂sk,c
+ psc ·

∂(1/nV )
∂sk,c

+
sc

sV
·
�
�
��7

0
∂qc

∂sk,c
+

qc

sV
·
�
�
��7

1
∂sc

∂sk,c
+ qcsc ·

∂(1/nV )
∂sk,c

=
sc

sV
· ∑

j 6=k,b 6=c
sj,b +

p
sV
− psc

s2
V

+
qc

sV
− qcsc

s2
V

=
sc

sV
· ∑

j 6=k,b 6=c
sj,b + p ·

(
1
sV
− sc

s2
V

)
+ qc ·

(
1
sV
− sc

s2
V

)
≥ 0 (A.2.7)
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Similarly, for term 2 ,

2 =
sa

sV
· ∂p

∂sk,c︸︷︷︸
∑j 6=k,b 6=c sj,b

+
p

sV
·
�
�
��7

0
∂sa

∂sk,c
+ psa ·

∂(1/nV )
∂sk,c

+
sa

sV
· ∂qa

∂sk,c︸︷︷︸
∑j 6=k sj,c

+
qa

sV
·
�
�
��7

0
∂sa

∂sk,c
+ qasa ·

∂(1/nV )
∂sk,c

=
sa

sV
· ∑

j 6=k,b 6=c
sj,b −

psa

s2
V

+
sa

sV
·∑

j 6=k
sj,c −

qasa

s2
V

=
sa

sV
·
{

∑
j 6=k

∑
b

sj,b −
(

p
sV

+
qa

sV

)

︸ ︷︷ ︸
3

}
(A.2.8)

Substitute p = 1
2 ∑i 6=j,b 6=d si,bsj,d, and qa =

1
2 ∑i 6=j,b 6=a si,bsj,b in term 3 to get:

p
sV

+
qa

sV
=

1
2 ∑

i 6=j,b 6=d
si,b

sj,d

sV
+

1
2 ∑

i 6=j,b 6=a
si,b

sj,b

sV

≤ 1
sV
· 1

2 ∑
i 6=j,b 6=d

(
si,bsj,d + si,bsj,b

)

≤ 1
sV

(
∑
i,d

si,d

)
·
(

∑
j 6=k

∑
b

sj,b

)

= ∑
j 6=k

∑
b

sj,b (A.2.9)

Hence term 2 is nonnegative. Combining Eq. (A.2.6) to A.2.9 with Eq. (A.2.5), we
get ∂θ(s)/∂sk,c ≥ 0. Therefore, fix xA � xB and v ∈ V , it holds that ∆DiRECt(v | xA) ≥
∆DiRECt(v | xB) for the case where there are two regions, and thus fEC2 is adaptive
submodular for m = 2 w.r.t. a uniform prior (note that we can adapt the proof technique
from [GKR10a] to prove A.S. for arbitrary prior).

Now assume that f (m)
DiRECt is adaptive submodular for m = k and k > 2, and we want to

prove when m = k + 1, f (k+1)
DiRECt is also adaptive submodular. By definition, we have

f (k+1)
DiRECt = 1−

k+1

∏
i=1

(
1− f i

EC2(S(π, xV ))
)

= 1− (1− f k+1
EC2 (S(π, xV )) ·

k

∏
i=1

(
1− f i

EC2(S(π, xV ))
)

= 1− (1− f k+1
EC2 (S(π, xV )) · (1− f (k)DiRECt)
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Since f (k)DiRECt is adaptive submodular and strongly adaptive monotone, we can apply
the same analysis for the two region case, to the above problem. Therefore, f (k+1)

DiRECt is
adaptive submodular, and thus f (n)DiRECt is adaptive submodular for any n ≥ 1.

Remarks (“intuitive explanation” of the proof). In fact, one can find concrete examples
where Noisy-OR does not preserve adaptive submodularity. Fortunately, for EC2-like
objectives, we have proved that it does preserve adaptive submodularity. The intuition
lies in that the EC2 objective characterizes a class of adaptive submodular functions
with certain structures, which offers enough slack for our proof to go through.

A.2.2 Proof of Theorem 4.12:

Near-optimality of DiRECt

Proof. Let Q be the quota to be achieved, and η be any value such that fDiRECt(S(π, xV )) >
Q − η implies fDiRECt(S(π, xV )) = Q, then by Theorem 10 of [GK11a], the cost of
πDiRECt satisfies

costavg(πDiRECt) ≤ costavg(π
∗)(ln (Q/η) + 1).

In our case, apply Q = 1 and η ≥
(

1
p2

min

)n
to get

costavg(πDiRECt) ≤ costavg(π
∗)(2n ln (1/pmin) + 1).

Hence it finishes the proof.

198



A.2. Proofs from Chapter 4

A.2.3 Proof of Theorem 4.15:

Upper Bounds on the Cost of π
g
H̃

In this subsection, we provide proofs for the upper bounds on the cost of Algorithm 3.
In the analysis, we assume that we only sample the hypotheses once at the beginning of
each experiment (i.e., we don’t resample after each iteration).

Proof. The main idea of the proof is illustrated in Fig. A.3.

OPTp
g
H̃ p⇤H̃

H̃H

Figure A.3: Depicting the main idea behind the proof. We introduce π∗H̃ (the optimal
policy on the sampled distribution) as an auxiliary policy to connect π

g
H̃ with OPT. If

the realized hypothesis h∗ ∈ H̃, then π
g
H̃ efficiently identifies the decision. Otherwise,

(with probability at most η) π
g
H̃ randomly chooses tests, and the cost can be at most

C(V).

Bound on the Expected Cost

We first prove the upper bound on the expected cost of the algorithm. We use p
to denote the real distribution over the hypotheses h ∈ H, and p̃ be the sampled
distribution. That is, p(h) = P [h], and

p̃(h) =





p(h)/(1− η), for h ∈ H̃;

0, otherwise.
(A.2.10)

For any policy π, let costp̃(π) , Eh∼ p̃(h)[C(S(π, h))] denote the expected cost of π

w.r.t. p̃. To distinguish the expected cost of a policy w.r.t. the original distribution p
from costp̃(π), in this subsection we use costp(π) , costavg(π) = Eh∼p(h)[C(S(π, h))].
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The expected cost of π w.r.t. the true distribution p satisfies

costp(π) = ∑
h∈H

p(h)C(S(π, h))

= ∑
h∈H̃

p(h)C(S(π, h)) + ∑
h∈H\H̃

p(h)C(S(π, h))

Eq. (A.2.10)
= (1− η) ∑

h∈H̃
p̃(h)C(S(π, h)) + ∑

h∈H\H̃
p(h)C(S(π, h))

= (1− η) costp̃(π) + ∑
h∈H\H̃

p(h)C(S(π, h))︸ ︷︷ ︸
≤C(V)

(A.2.11)

≤ (1− η) costp̃(π) + η · C(V). (A.2.12)

The second term on the RHS of Eq. (A.2.11) is non-negative, which gives

(1− η) costp̃(π) = costp(π)− ∑
h∈H\H̃

p(h)C(S(π, h))

≤ costp(π) (A.2.13)

Let π∗p̃ be the optimal policy w.r.t. the sampled distribution p̃. By Theorem 2.7 we get

costp̃

(
π

g
H̃

)
≤ (r ln (1/ p̃min) + 1) costp̃

(
π∗H̃
)

. (A.2.14)

Therefore,

costp(π
g
H̃)

Eq. (A.2.12)
≤ (1− η) costp̃(π

g
H̃) + η · C(V)

Eq. (A.2.14)
≤ (1− η) (r ln (1/ p̃min) + 1) costp̃

(
π∗H̃
)

+ η · C(V).

By definition, we know costp̃

(
π∗H̃

)
≤ costp̃(OPT). Hence

costp(π
g
H̃) ≤ (1− η) (r ln (1/ p̃min) + 1) costp̃(OPT) + η · C(V)

Eq. (A.2.13)
≤ (r ln (1/ p̃min) + 1) costp(OPT) + η · C(V),

which completes the first part of the proof.
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Bound on the Worst-case Cost

Next, we provide the proof for the bound on the worst-case cost. Analogous to the
previous analysis, we consider two possible scenarios: (i) the realized hypotheses (i.e.,
the full realization vector) h∗ ∈ H̃; and (ii) h∗ /∈ H̃.

For any policy π, the worst-case cost of π satisfies

costwc(π) = max
h∈H

C(S(π, h))

= max{max
h∈H̃

C(S(π, h)), max
h∈H\H̃

C(S(π, h))}.

Since policy π
g
H̃ terminates if there is no edge left on H̃, then maxh∈H\H̃ C(S(π, h)) ≤

maxh∈H̃ C(S(π, h). Therefore,

costwc(π
g
H̃) = max

h∈H̃
c
(
S
(

π
g
H̃, h

))

(a)
≤ (r ln (1/ p̃min) + 1)max

h∈H̃
c
(
S
(
π∗H̃, h

))

≤ (r ln (1/ p̃min) + 1)max
h∈H

c (S (OPT, h)) .

Step (a) in the above equation follows from Theorem A.12 of [GK11b].

Therefore, when π
g
H̃ terminates, with probability at least 1− η, it succeeds to output

the correct decision with cost (r ln (1/ p̃min) + 1) costwc(OPT).
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A.2.4 Proof of Theorem 4.16:

Lower Bound on the Value of π
g
H̃

Assume that the cumulative probability of the enumerate hypotheses is at least 1− η,
i.e., using our sampling algorithm we enumerate 1− η fraction of the total mass.

Denote the set of sampled hypotheses by H̃, and the expected gain of test v on H̃ by
∆H̃(v | ·). Suppose we run the greedy algorithm based on H̃. We want to show that
the following lemma holds:

Lemma A.3. Suppose H̃ ⊆ H and P
[
H̃, xA

]
≥ (1− η)P [H, xA]. Let ṽ , arg maxv ∆H̃(v |

xA) be the test with the maximal gain on H̃ in the EC2 objective function. Then for any test
v, it holds that

∆H(ṽ | xA) ≥ ∆H(v | xA)− 2ηP [xA]
2 .

That is, the test ṽ which achieves the maximal gain on H̃ will achieve a gain on H which
is no less than ε , 2ηP [xA]

2 below the maximal gain of any test. In the following, we
provide the proof of Lemma A.3.

Proof. Clearly, if we can show that for any test v, the gain of v over H̃ and the gain of v
over H are at most ε apart, i.e.,

∆H(v | xA) ≤ ∆H̃(v | xA) + ε, (A.2.15)

then we know that ∆H(v∗ | xA) ≤ ∆H̃(v
∗ | xA) + ε ≤ ∆H̃(ṽ | xA) + ε.

In the following, we show that inequality (A.2.15) holds.

The conditional expected gain of test v over observed tests xA is

∆H̃(v | xA) = E[δH̃(xv | xA)]

= P [xv = 1 | xA] δH̃(xv = 1 | xA)

+ P [xv = 0 | xA] δH̃(xv = 0 | xA).

Here δH̃(xv | xA) denotes the conditional benefit of test v if its outcome is realized as
xv. Note that we can compute the probability terms P [xv = 1 | xA] and P [xv = 0 | xA]
exactly from the CPT {$ij}n×m via Bayesian update, i.e., P [xv | xA] = ∑θ P [xv, θ | xA] =
∑θ P[θ]P[xA|θ]P[xv|θ]

∑θ P[θ]P[xA|θ] . What remains to be approximated is the gain for each specific
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realization. For EC2 object function, the gain of observing xv over hypothesis set H
after having observed xA is

δH(xv | xA) =
1
2 ∑

y 6=y′

(
P
[
Ry, xA

]
P
[
Ry′ , xA

]
−P

[
Ry, xA, xv

]
P
[
Ry′ , xA, xv

])
,

where Ry represents the set of hypotheses in region / equivalence class indexed by y.

We define short-hand notation γy := P
[
Ry \ R̃y, xA

]
, where R̃y denotes the sampled

hypotheses within decision region Ry. The difference in the gain of v over H and H̃
can be expressed as

δH(xv | xA)− δH̃(xv | xA)

=
1
2 ∑

y 6=y′

(
P
[
Ry, xA

]
P
[
Ry′ , xA

]
−P

[
R̃y, xA

]
P
[
R̃y′ , xA

])
−

1
2 ∑

y 6=y′

(
P
[
Ry, xA, xv

]
P
[
Ry′ , xA, xv

]
− P

[
R̃y, xA, xv

]
P
[
R̃y′ , xA, xv

])

≤ 1
2 ∑

y 6=y′

(
P
[
Ry, xA

]
P
[
Ry′ , xA

]
− P

[
R̃y, xA

]
P
[
R̃y′ , xA

])

=
1
2 ∑

y 6=y′

((
P
[
R̃y, xA

]
+ γy

) (
P
[
R̃y′ , xA

]
+ γy′

)
−P

[
R̃y, xA

]
P
[
R̃y′ , xA

])

=
1
2 ∑

y 6=y′

(
γy

(
γy′ + P

[
R̃y′ , xA

])
+ γy′P

[
R̃y, xA

])

=
1
2 ∑

y 6=y′

(
γyP

[
Ry′ , xA

]
+ γy′P

[
R̃y, xA

])

≤∑
y

γy ∑
y′

P
[
Ry′ , xA

]
+ ∑

y′
γy′ ∑

y
P
[
R̃y, xA

]
.

By the definition of γy we know that

∑
y

γy = P

[
⋃

i

(
Ry \ R̃y

)
, xA

]
(a)
= P

[(
⋃

i

Ry \
⋃

i

R̃y

)
, xA

]
= P

[
H \ H̃, xA

]
≤ ηP [xA] .

Step (a) is because of the assumption that Ry’s do not overlap. Hence,

∆H(v | xA)− ∆H̃(v | xA) = E[δH̃(xv | xA)]

≤ ηP [xA]∑
y′

P
[
Ry′ , xA

]
+ ηP [xA]∑

y
P
[
R̃y, xA

]

≤ 2ηP [xA]
2 . (A.2.16)

Combining Equation (A.2.15) and (A.2.16) we finish the proof.
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Next, we provide the proof of Theorem 4.16 using the Lemma A.3.

Proof of Theorem 4.16. The key of the proof is to bound the one-step gain of the policy
π

g
H̃,[`]

.

F(πg
H̃,[i+1]

)− F(πg
H̃,[i]

)

Lemma A.3
≥ E

[
max

v
(∆(v | xA))− 2η

]

(a)
≥ E

[
∆(π∗H,[k] | xA)

k
− 2η

]

= E




F(π∗H,[k]@π
g
H̃,[i]

)− F(πg
H̃,[i]

)

k
− 2η




(b)
≥ E




F(π∗H,[k])− F(πg
H̃,[i]

)

k
− 2η


 .

Here π∗H,[k]@π
g
H̃,[i]

denotes the concatenated policy of π∗H,[k] and π
g
H̃,[i]

(i.e., we first run

π
g
H̃,[i]

, and then run π∗H,[k] from scratch, ignoring the observations made by π
g
H̃,[i]

).

The proof structure follows closely from the proof of Theorem A.10 in [GK11b]: Step (a)
follows from the adaptive submodularity of f , and step (b) is due to monotonicity of F.

Define ∆i := F(π∗H,[k])− F(πg
H̃,[i]

), from the above equation we get ∆` ≤
(

1− 1
k

)l
∆0 +

∑l
i=0

(
1− 1

k

)i
. Hence, F

(
π

g
H̃,[`]

)
≥
(
1− e−`/k) F

(
π∗H,[k]

)
− 2kη

(
1−

(
1
k

)`)
.
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A.2.5 Proof of Theorem 4.19 Outline:

Introducing the Auxiliary Functions

In this subsection, we provide the proofs of our theoretical results in full detail. Recall
that for the theoretical analysis, we study the basic setting where test outcomes are
binary, and the test noise is independent of the underlying root-causes (i.e., given a test
v, the noise rate on the outcome of test v is only a function of v, but not a function of θ).

The general idea behind our analysis, is to show that by running ECED, the one-step
gain in learning the value of the target variable is significant, compared with the
cumulative gain of an optimal policy over k steps (see Fig. A.4).

. . .

. . .

 ` ` + 1. . .

(
{

⇡

v1

v`+1

xv1

xv`

k steps

OPT

y`= {(v1,xv1), . . . , (v`,xv`)}

Daux(v`+1 | y`)

faux(y`)

Figure A.4: On the left, we demonstrate a sequential policy in the form of its
decision tree representation. Nodes represent tests selected by the policy, and
edges represent outcomes of tests. At step `, a policy maps partial realization
ψ` = {(v1, xv1), . . . , (v`, xv`)} to the next test v`+1 to be performed. In the middle,
we demonstrate the tests selected by an optimal policy OPT of length k. On the right,
we illustrate the change in the auxiliary function as ECED selects more tests. Running
OPT at any step of execution of ECED will make faux below some threshold (repre-
sented by the red dotted line). The key idea behind our proof, is to show that the
greedy policy ECED, at each step, is making effective progress in reducing the expected
prediction error (in the long run), compared with OPT.

In §4.2.1, we show that greedily optimizing a posterior-based objective function (e.g.,
expected prediction error) may perform arbitrarily poorly. In those cases, we may end
up failing to pick some tests, which have negligible immediate gain regarding error
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( {

fAUX( `)

ECED

OPT
k-step gain

1-step gain

y` + 1`. . .

Daux(v | y)Daux(OPT | y) DEC2,y(OPT) DEC2,y(v)

Lb (pmap
err )

Ub (pmap
err )

Figure A.5: The proof outline for Theorem 4.19.

reduction, but are very informative in the long run. ECED bypasses such an issue by
selecting tests that maximally distinguish root-causes with different target values. In
order to analyze ECED, we need to find an auxiliary function that properly tracks the
“progress” of the ECED algorithm; meanwhile, this auxiliary function should allow us
to connect the heuristic by which we select tests (i.e., ∆ECED), with the target objective
of interest (i.e., the expected prediction error perr).

We consider the auxiliary function defined in Equation (4.5.3). For brevity, we suppress
the dependence of ψ where it is unambiguous. Further, we use pθ, pθ′ , and py as short-
hand notations for P [θ | ψ], P [θ′ | ψ] and P [y | ψ]. Equation (4.5.3) can be simplified
as

faux = ∑
(θ,θ′)∈E

pθ pθ′ log
1

pθ pθ′
+ c ∑

y∈Y
H2
(

py
)

(A.2.17)

We illustrate the outline of our proofs in Fig. A.5. Our goal is to bound the cost of
ECED against the cost of OPT (Theorem 4.19). As we have explained earlier, our
strategy is to relate the one-step gain of ECED (i.e., Daux(v | y) ), with the gain of OPT

in k-steps (i.e., Daux(OPT | y) ). To achieve that, we divide our proof into three parts:

Part 1 We show that the auxiliary function faux is closely related with the target objective
function perr. More specifically, we provide both an upper bound Ub (pmap

err ) and
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a lower bound Lb (pmap
err ) of faux in Lemma 4.20, and give the detailed proofs in

Appendix §A.2.6.

Part 2 To analyze the one-step gain of ECED, we introduce another intermediate auxiliary
function: For a test v`+1 chosen by ECED, we relate its one-step gain in the
auxiliary function Daux(v | y) , to its one-step gain in the EC2 objective DEC2,y(v)

(Lemma 4.21, detailed proof provided in Appendix §A.2.7). The reason why we
introduce this step is that the EC2 objective is adaptive submodular, by which
we can relate the 1-step gain of a greedy policy DEC2,y(v) to an optimal policy
DEC2,y(OPT) .

Part 3 To close the loop, it remains to connect the gain of an optimal policy OPT in the
EC2 objective function DEC2,y(OPT) , with the gain of OPT in the auxiliary function
Daux(OPT | y) . We establish such connection in Lemma A.8, and present its proof
in Appendix §A.2.8.

To make the proof more accessible, we insert the annotated color blocks from Fig. A.5
(i.e., Ub (pmap

err ) , Lb (pmap
err ), Daux(v | y) , DEC2,y(v) , DEC2,y(OPT) , Daux(OPT | y) , etc), into the

subsequent subsections, so that readers can easily relate different parts of this section
to the proof outline. Note that we only use these annotated color blocks for positioning
the proofs, and hence readers can ignore the notations, as it may slightly differ from
the ones used in the proof.

A.2.6 Proof of Theorem 4.19 Part 1:

Proof of Lemma 4.20

In this subsection, we provide the proof of Lemma 4.20, which relates faux to perr.

Define pe(ψ) , ∑y∈Y P [y | ψ] (1−P [y | ψ]) as the prediction error of a stochastic
estimator upon observing ψ, i.e., the probability of mispredicting y if we make a random
draw from P [Y | ψ]. We show in Lemma A.4 that pMAP

err (ψ) is within a constant factor
of pe(ψ):

Lemma A.4. Fix ψ, it holds that pMAP
err (ψ) ≤ pe(ψ) ≤ 2pMAP

err (ψ).

Proof of Lemma A.4. We can always lower bound pe by pMAP
err , since by definition,

pMAP
err (ψ) = 1−maxy P [y | ψ] = ∑y∈Y P [y | ψ] ·

(
1−maxy P [y | ψ]

)
≤ ∑y∈Y P [y | ψ] (1−P [y | ψ]) =

pe(ψ).
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To prove the second part, we write pyi = P [Y = yi | ψ] for all yi ∈ Y . W.l.o.g., we
assume py1 ≥ py2 ≥ · · · ≥ pyn . Then pMAP

err = 1− py1 . We further have

2pMAP
err = 2(1− py1) = 2(

n

∑
i=2

pyi) = 2(
n

∑
i=1

pyi)(
n

∑
i=2

pyi) = 2(py1 +
n

∑
i=2

pyi)(
n

∑
i=2

pyi)

≥ 2py1(
n

∑
i=2

pyi) + (
n

∑
i=2

pyi)
2

≥
n

∑
i 6=j

pyi pyj = ∑
i

pyi(1− pyi) = pe

Now, we provide lower and upper bounds of the second term in the RHS of Equation
(A.2.17):

Lemma A.5. 2pMAP
err ≤ ∑y∈Y H2

(
py
)
≤ 3(H2

(
pMAP

err
)
+ pMAP

err log m).

Proof of Lemma A.5. We first prove the inequality on the left. Expanding the middle
term involving the binary entropy of py, we get

∑
y∈Y

H2
(

py
)
= ∑

y∈Y

(
py log

1
py

+ (1− py) log
1

1− py

)

(a)
≥ 2

ln 2 ∑
y∈Y

py(1− py)

≥ 2pe
Lemma A.4
≥ 2pMAP

err

Here, step (a) is by inequality ln x ≥ 1− 1/x for x ≥ 0.

To prove the second part, we first show in the following that ∑y(1− py) log 1
1−py

≤
2 ∑y py log 1

py
.

W.l.o.g., we assume that the probabilities py’s are in decreasing order, i.e., py1 ≥ py2 ≥
· · · ≥ pyn . Observe that if py ∈ [0, 1/2], then (1− py) log 1

1−py
≤ py log 1

py
. Consider the

following two cases:

1. py1 ≤ 1/2. In this case, we have ∑y(1− py) log 1
1−py

≤ ∑y py log 1
py

.
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2. py1 > 1/2. Since ∑i>1 pyi = 1− py1 , we have

∑
i
(1− pyi) log

1
1− pyi

= (1− py1) log
1

1− py1

+ ∑
i>1

(1− pyi) log
1

1− pyi

= ∑
i>1

pyi log
1

∑i>1 pyi

+ ∑
i>1

(1− pyi) log
1

1− pyi

≤ ∑
i>1

pyi log
1

pyi

+ ∑
i>1

(1− pyi) log
1

1− pyi

≤ ∑
i>1

pyi log
1

pyi

+ ∑
i>1

pyi log
1

pyi

≤ 2 ∑
i>0

pyi log
1

pyi

Therefore,

∑
y∈Y

H2
(

py
)
≤ 3 ∑

i>0
pyi log

1
pyi

= 3H (Y) . (A.2.18)

Furthermore, by Fano’s inequality (in the absence of conditioning), we know that
H (Y) ≤H2

(
pMAP

err
)
+ pMAP

err log(|Y| − 1). Combining with Equation (A.2.18) we get

∑
y

H2
(

py
)
≤ 3H (Y) ≤ 3

(
H2

(
pMAP

err

)
+ log(|Y| − 1)

) (b)
≤ 3

(
H2

(
pMAP

err

)
+ log m

)

where in (b) we use the fact that t = |Y| ≤ | supp(Θ)| = m, since Y = r(Θ) is a function
of Θ. Hence it completes the proof.

Next, we bound the first term on the RHS of Equation (A.2.17), i.e., ∑{θ,θ′}∈E pθ pθ′ log 1
pθ pθ′

,
against pMAP

err :

Lemma A.6. ∑{θ,θ′}∈E pθ pθ′ log 1
pθ pθ′

≤ 2(H2 (pe) + pe log m).
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Proof of Lemma A.6. We can expand the LHS as

LHS = −∑
θ′

pθ′ ∑
θ:r(θ) 6=r(θ′)

pθ(log pθ + log pθ′)

= −2 ∑
θ′

pθ′ ∑
θ:r(θ) 6=r(θ′)

pθ log pθ

= −2 ∑
y∈Y

∑
θ′ :r(θ′)=y

pθ′ ∑
θ:r(θ) 6=y

pθ log pθ

= 2 ∑
y∈Y

py(1− py) ∑
θ:r(θ) 6=y

pθ

1− py

(
log

pθ

1− py
+ log (1− py)

)

= −2 ∑
y∈Y

py(1− py) log(1− py) + 2 ∑
y∈Y

py(1− py)H

({
pθ

(1− py)

}

θ:r(θ) 6=y

)

(A.2.19)

≤ 2 ∑
y∈Y

pyH2
(
1− py

)
+ 2 ∑

y∈Y
py(1− py)H

({
pθ

(1− py)

}

θ:r(θ) 6=y

)

Since H

({
pθ

(1−py)

}
θ:r(θ) 6=y

)
≤ log n ≤ log m, we have

LHS ≤ 2 ∑
y∈Y

pyH2
(
1− py

)
+ 2 ∑

y
py(1− py) log m
︸ ︷︷ ︸

pe log m

Jensen
≤ 2H2

(
∑

y∈Y
py(1− py)

)
+ 2pe log m

= 2 (H2 (pe) + pe log m) .

which completes the proof.

Now, we are ready to state the upper bound Ub (pmap
err ) and lower bound Lb (pmap

err ) of
faux.

Proof of Lemma 4.20. Clearly, ∑{θ,θ′}∈E pθ pθ′ log 1
pθ pθ′

≥ 0. By Lemma A.5 we get the
lower bound:

faux(ψ) ≥ 2c · pMAP
err (ψ).
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Now assume pMAP
err ≤ 1/4. By Lemma A.4 we know pe ≤ 2pMAP

err , and H2 (pe) ≤
H2
(
2pMAP

err
)
≤ 2H2

(
pMAP

err
)
. Combining with Lemma A.5 and Lemma A.6, we get

faux(ψ) ≤ 3c ·
(

H2

(
pMAP

err

)
+ pMAP

err log m
)
+ 4 (H2 (pe) + pe log m)

≤ (3c + 4) ·
(

H2

(
pMAP

err

)
+ pMAP

err log m
)

,

which completes the proof.

A.2.7 Proof of Theorem 4.19 Part 2:

Proof of Lemma 4.21

In this section, we analyze the 1-step gain in the auxiliary function Daux(v | y) , of any
test v ∈ V . By the end of this section, we will show that it is lowered bounded by the
one-step gain in the EC2 objective DEC2,y(v) .

Recall that we assume test outcomes are binary for our analysis, and in the following
of this section, we assume the outcome xv of test v is in {+,−} instead of {0, 1}, for
clarity purposes.

Notations and the Intermediate Goal

↵1

b2

a2
Ry3

Ry2Ry1

q0s

Xv

Q+, a

Q�, b

Figure A.6: Performing binary test v on Θ and Y. Dots represent root-causes θ ∈
supp(Θ), and circles represent values of the target variable y ∈ Y . The favorable
outcome of Xv for the root-causes in solid dots are +; the favorable outcome for root-
causes in hollow dots are −. We also illustrate the short-hand notations used in §A.2.7.
They are: p, q (i.e., the posterior probability distribution over Y and Θ), γ (i.e., the prior
distribution over Y and Θ) and α, β (i.e., the probability mass of solid and hollow dots,
respectively, before performing test v).
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Table A.2: Summary of notations introduced for the proof of Lemma 4.21.

γ P [· | ψ], i.e., probability distribution on Θ and Y, before perform-
ing test v

γ+, γ− P [Xv = + | ψ],P [Xv = − | ψ]

pθ, py P [· | ψ, Xv = +], i.e., probability distribution on Θ and Y having
observed Xv = +

qθ, qy P [· | ψ, Xv = −], i.e., probability distribution on Θ and Y having
observed Xv = −

Θ+, Θ− set of positive/ negative root-causes

Θ+
i , Θ−i set of positive/ negative root-causes associated with target yi

α, β total probability mass of positive/ negative root-causes

αi, βi probability mass of positive/ negative root-causes associated
with target yi

µi, νi αi/α, βi/β (defined in §A.2.7)

θ � θ′ r(θ) 6= r(θ′), i.e., root-causes θ and θ′ do not share the same
target value

For brevity, we first define a few short-hand notations to simplify our derivation. Let
p, q be two distributions on Θ, and h = γ+p + γ−q be the convex combination of the
two, where γ+, γ− ≥ 0 and γ+ + γ− = 1.

In fact, we are using p and q to refer to the posterior distribution over Θ after we
observe the (noisy) outcome of some binary test v, and use γ to refer to the distribution
over Θ before we perform the test, i.e., pθ , P [θ | Xv = +], qθ , P [θ | Xv = −], and
γθ , P [θ] = γ+pθ + γ−qθ, where γ+ = P [Xv = +] and γ− = P [Xv = −]. For yi ∈ Y ,
we use pi , ∑θ:r(θ)=yi

pθ to denote the probability of yi under distribution p, and use
qi , ∑θ:r(θ)=yi

qθ to denote the probability of yi under distribution q.

Further, given a test v, we define Θ+
i , Θ−i to be the set of root-causes associated with

target yi, whose favorable outcome of test v is + (for Θ+
i ) and − (for Θ−i ). Formally,

Θ+
i , {θ : r(θ) = yi ∧P [Xv = + | θ] ≥ 1/2}

Θ−i , {θ : r(θ) = yi ∧P [Xv = + | θ] < 1/2}

We then define Θ+ ,
⋃

i∈{1,...,n}Θ+
i , and Θ− ,

⋃
i∈{1,...,n}Θ−i , to be the set of “positive”

and “negative” root-causes for test v, respectively.
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Let αi, βi be the probability mass of the root-causes in Θ+
i and Θ−i , i.e., αi , ∑y∈Θ+

i
P [θ],

and βi , ∑y∈Θ−i
P [θ] . We further define α , ∑yi∈Y αi = ∑θ∈Θ+ P [θ], and β ,

∑yi∈Y βy = ∑θ∈Θ− P [θ], then clearly we have α + β = 1. See Fig. A.6 for illustra-
tion.

Now, we assume that test v has error rate ε. That is,

∀θ, min{P [Xv = + | θ] , P [Xv = − | θ]} = ε.

Then, by definition of γ+, γ−, pi, qi, pθ, qθ, it is easy to verify that

γ+ = αε̄ + βε, γ− = αε + βε̄

pi =
αiε̄ + βiε

γ+
, qi =

αiε + βiε̄

γ−

pθ =
γθ ε̄

γ+
, qθ =

γθε

γ−
, if θ ∈ Θ+

i

pθ =
γθε

γ+
, qθ =

γθ ε̄

γ−
, if θ ∈ Θ−i (A.2.20)

For the convenience of readers, we summarize the notations provided above in Ta-
ble A.2.

Given root-causes θ and θ′, we use θ � θ′ to denote that the values of the target variable
Y associated with root-causes θ and θ′ are different, i.e., r(θ) 6= r(θ′).

We can rewrite the auxiliary function (as defined in Equation (4.5.3)) as follows:

faux = ∑
θ�θ′

γθγθ′ log
1

γθγθ′
+ c ∑

yi∈Y
H2 (γi) .

If by performing test v we observe Xv = +, we have

faux((v,+)) = ∑
θ�θ′

pθ pθ′ log
1

pθ pθ′
+ c ∑

yi∈Y
H2 (pi)

otherwise, if we observe Xv = −,

faux((v,−)) = ∑
θ�θ′

qθqθ′ log
1

qθqθ′
+ c ∑

yi∈Y
H2 (qi)
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Therefore, the expected gain (i.e., Daux(v | y) ) of performing test v is,

∆aux =

1︷ ︸︸ ︷

∑
θ�θ′

γθγθ′ log
1

γθγθ′
−
(

γ+ ∑
θ�θ′

pθ pθ′ log
1

pθ pθ′
+ γ− ∑

θ�θ′
qθqθ′ log

1
qθqθ′

)

+ c

(
∑

yi∈Y
H2 (γi)−

(
γ+ ∑

yi∈Y
H2 (pi) + γ− ∑

yi∈Y
H2 (qi)

))

︸ ︷︷ ︸
2

(A.2.21)

In the following, we derive lower bounds for the above two terms respectively.

A Lower Bound on Term 1

Let gθ,θ′ , γ+pθ pθ′ + γ−qθqθ′ . Then, we can rewrite Term 1 as,

Term 1 = ∑
θ�θ′

γθγθ′ log
1

γθγθ′
− ∑

θ�θ′
gθ,θ′ log

1
gθ,θ′︸ ︷︷ ︸

Part 1

+ ∑
θ�θ′

gθ,θ′ log
1

gθ,θ′
−
(

γ+ ∑
θ�θ′

pθ pθ′ log
1

pθ pθ′
+ γ− ∑

θ�θ′
qθqθ′ log

1
qθqθ′

)

︸ ︷︷ ︸
Part 2

(A.2.22)

Part 1. We first provide a lower bound for part 1 of Equation (A.2.22).

Notice that for concave function f (x) = x log 1
x and δ < x, it holds that f (x)− f (x−

δ) ≥ δ
∂ f
∂x

∣∣
x = δ(log 1

x − 1), then we get

∑
θ�θ′

γθγθ′ log
1

γθγθ′
− ∑

θ�θ′
gθ,θ′ log

1
gθ,θ′

≥ ∑
θ�θ′

(γθγθ′ − gθ,θ′)

(
log

1
γθγθ′

− 1
)

Further, observe

γθγθ′ − gθ,θ′ = (γ+pθ + γ−qθ)(γ+pθ′ + γ−qθ′)− (γ+pθ pθ′ + γ−qθqθ′)

= (γ+pθ + γ−qθ)(pθ′ + qθ′ − γ−pθ′ − γ+qθ′)− (γ+pθ pθ′ + γ−qθqθ′)

= γ+γ−pθ′qθ − γ+γ−pθ′ pθ + γ+γ−pθqθ′ − γ−γ+qθ′qθ

= −γ+γ−(pθ − qθ)(pθ′ − qθ′)
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Combining the above two equations gives us

Part 1 ≥ ∑
θ�θ′
−γ+γ−(pθ − qθ)(pθ′ − qθ′)

(
log

1
γθγθ′

− 1
)

For any root-cause pair {θ, θ′} with θ � θ′, and binary test v, there are only 4 possible
combinations regarding the root-causes’ favorable outcomes. Namely,

1. Both θ and θ′ maps x to +, i.e., θ ∈ Θ+ ∧ θ′ ∈ Θ+.

We define such set of root-cause pairs with positive favorable outcomes as U(+,+) ,

{{θ, θ′} : θ ∈ Θ+ ∧ θ′ ∈ Θ+} (For other cases, we define U(−,−), U(+,−), U(−,+) in a
similar way).

In this case, we have

∑
{θ,θ′}∈U(+,+)

−γ+γ−(pθ − qθ)(pθ′ − qθ′)

(
log

1
γθγθ′

− 1
)

Eq (A.2.20)
= ∑

{θ,θ′}∈U(+,+)

−γ+γ−

(
γθ ε̄

γ+
− γθε

γ−

)(
γθ′ ε̄

γ+
− γθ′ε

γ−

)(
log

1
γθγθ′

− 1
)

=γ+γ−

(
γ−ε̄− γ+ε̄

γ+γ−

)2

∑
{θ,θ′}∈U(+,+)

−γθγθ′

(
log

1
γθγθ′

− 1
)

=
β2 (1− 2ε)2

γ+γ−
∑

{θ,θ′}∈U(+,+)

−γθγθ′

(
log

1
γθγθ′

− 1
)

=
β2 (1− 2ε)2

γ+γ−
∑

{θ,θ′}∈U(+,+)

(
−2γθγθ′ log

1
γθ

+ γθγθ′

)

=
β2 (1− 2ε)2

γ+γ−


 ∑

yi∈Y
(α− αi) ∑

θ∈Θ+
i

−2γθ log
1

γθ
+ ∑

yi∈Y
αi(α− αi)




=
(1− 2ε)2

γ+γ−


−2β2 ∑

yi∈Y
(α− αi) ∑

θ∈Θ+
i

γθ log
1

γθ
+ β2 ∑

yi∈Y
αi(α− αi)




2. Both θ and θ′ maps x to −. Similarly, we get

∑
{θ,θ′}∈U(−,−)

−γ+γ−(pθ − qθ)(pθ′ − qθ′)

(
log

1
γθγθ′

− 1
)

=
(1− 2ε)2

γ+γ−


−2α2 ∑

yi∈Y
(β− βi) ∑

θ∈Θ−i

γθ log
1

γθ
+ α2 ∑

yi∈Y
βi(β− βi)
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3. θ maps x to +, θ′ maps x to −. We have

∑
(θ,θ′)∈U(+,−)

−γ+γ−(pθ − qθ)(pθ′ − qθ′)

(
log

1
γθγθ′

− 1
)

=
(1− 2ε)2

γ+γ−


αβ ∑

yi∈Y
(β− βi) ∑

θ∈Θ+
i

γθ log
1

γθ
+ αβ ∑

yi∈Y
(α− αi) ∑

θ∈Θ−i

γθ log
1

γθ

−αβ ∑
yi∈Y

αi(β− βi)

)

4. θ maps x to −, θ′ maps x to +. By symmetry we have

∑
(θ,θ′)∈U(−,+)

−γ+γ−(pθ − qθ)(pθ′ − qθ′)

(
log

1
γθγθ′

− 1
)

= ∑
(θ,θ′)∈U(+,−)

−γ+γ−(pθ − qθ)(pθ′ − qθ′)

(
log

1
γθγθ′

− 1
)
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Combining the above four equations, we obtain a lower bound on Part 1:

Part 1 ≥ (1− 2ε)2

γ+γ−


−2β2 ∑

yi∈Y
(α− αi) ∑

θ∈Θ+
i

γθ log
1

γθ
+ β2 ∑

yi∈Y
αi(α− αi)

−2α2 ∑
yi∈Y

(β− βi) ∑
θ∈Θ−i

γθ log
1

γθ
+ α2 ∑

yi∈Y
βi(β− βi)

+2αβ ∑
yi∈Y

(β− βi) ∑
θ∈Θ+

i

γθ log
1

γθ

+2αβ ∑
yi∈Y

(α− αi) ∑
θ∈Θ−i

γθ log
1

γθ
− 2αβ ∑

yi∈Y
αi(β− βi)




=
(1− 2ε)2

γ+γ−



(

2αβ ∑
yi∈Y

(β− βi)− 2β2 ∑
yi∈Y

(α− αi)

)
∑

θ∈Θ+
i

γθ log
1

γθ

+

(
2αβ ∑

yi∈Y
(α− αi)− 2α2 ∑

yi∈Y
(β− βi)

)
∑

θ∈Θ−i

γθ log
1

γθ

+β2 ∑
yi∈Y

αi(α− αi) + α2 ∑
yi∈Y

βi(β− βi)− 2αβ ∑
yi∈Y

αi(β− βi)

)

=
(1− 2ε)2

γ+γ−
·

2 ∑

yi∈Y
β(βαi − αβi) ∑

θ∈Θ+
i

γθ log
1

γθ

+2 ∑
yi∈Y

α(αβi − βαi) ∑
θ∈Θ−i

γθ log
1

γθ
− ∑

yi∈Y
(βαi − αβi)

2




=
(1− 2ε)2

γ+γ−
·

2 ∑

yi∈Y
(βαi − αβi)


βαi ∑

θ∈Θ+
i

γθ

αi
log

1
γθ
− αβi ∑

θ∈Θ−i

γθ

βi
log

1
γθ


−

∑
yi∈Y

(βαi − αβi)
2

)
(A.2.23)
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Part 2. Next, we will provide a lower bound on Part 2 of Equation (A.2.22).

By definition, we have

Part 2 = ∑
θ�θ′

(γ+pθ pθ′ + γ−qθqθ′) log
1

γ+pθ pθ′ + γ−qθqθ′

−
(

γ+ ∑
θ�θ′

pθ pθ′ log
1

pθ pθ′
+ γ− ∑

θ�θ′
qθqθ′ log

1
qθqθ′

)

(a)
≥ γ+γ−

2 ∑
θ�θ′

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′

Hereby, step (a) is due to the strong concavity1 of f (x) = x log 1
x .

As with the analysis of Part 1, we consider the four sets of {θ, θ′} pairs:

1. {θ, θ′} ∈ U(+,+): both θ and θ′ maps x to +.

In this case, we have

∑
(θ,θ′)∈U(+,+)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′
≥ ∑

(θ,θ′)∈U(+,+)

γ+γ−
2

(
√

pθ pθ′ −
√

qθqθ′)
2

Eq (A.2.20)
= ∑

(θ,θ′)∈U(+,+)

γ+γ−
2

(√
γθ ε̄

γ+

γθ′ ε̄

γ+
−
√

γθε

γ−
γθ′ε

γ−

)2

= ∑
(θ,θ′)∈U(+,+)

γ+γ−
2

γθγθ′

(
ε̄

γ+
− ε

γ−

)2

= ∑
(θ,θ′)∈U(+,+)

γ+γ−
2

γθγθ′
β2 (1− 2ε)2

(γ+γ−)2

=
(1− 2ε)2

2γ+γ−
β2 ∑

yi∈Y
αi(α− αi)

2. (θ, θ′) ∈ U(−,−). Similarly, we get

∑
(θ,θ′)∈U(−,−)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′
≥ (1− 2ε)2

2γ+γ−
α2 ∑

yi∈Y
βi(β− βi)

1If f is strongly concave, then for t ∈ [0, 1], it holds that f (tx + (1− t)y)− t f (x)− (1− t) f (y) ≥
t(1−t)

2 m(x− y)2, where m = min (| f ′′(x)| , | f ′′(y)|) .
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3. (θ, θ′) ∈ U(+,−): θ maps x to +, θ′ maps x to −. We have

∑
(θ,θ′)∈U(+,−)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′
≥ ∑

(θ,θ′)∈U(+,+)

γ+γ−
2

(√
γθ ε̄

γ+

γθ′ε

γ+
−
√

γθε

γ−
γθ′ ε̄

γ−

)2

= ∑
(θ,θ′)∈U(+,+)

γ+γ−
2

γθγθ′εε̄

(
1

γ+
− 1

γ−

)2

=
(1− 2ε)2

2γ+γ−
εε̄(α− β)2 ∑

yi∈Y
αi(β− βi)

4. (θ, θ′) ∈ U(−,+): θ maps x to −, θ′ maps x to +. By symmetry we have

∑
(θ,θ′)∈U(+,−)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′
≥ (1− 2ε)2

2γ+γ−
εε̄(α− β)2 ∑

yi∈Y
βi(α− αi)

Combining the above four equations, we obtain a lower bound on Part 2:

Part 2 ≥ ∑
(θ,θ′)∈U(+,+)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′
+ ∑

(θ,θ′)∈U(−,−)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′

+ ∑
(θ,θ′)∈U(+,−)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′
+ ∑

(θ,θ′)∈U(−,+)

γ+γ−
2

(pθ pθ′ − qθqθ′)
2

pθ pθ′ + qθqθ′

=
(1− 2ε)2

2γ+γ−

(
β2 ∑

yi∈Y
αi(α− αi) + α2 ∑

yi∈Y
βi(β− βi) + 2εε̄(α− β)2 ∑

yi∈Y
αi(β− βi)

)

(A.2.24)

A Lower Bound on Term 2

Now we move on to analyze Term 2 of Equation (A.2.22). By strong concavity of
f (x) = x log 1

x + (1− x) log 1
1−x , we obtain

Term 2 = c ∑
yi∈Y

(
γi log

1
γi

+ (1− γi) log
1

1− γi
− γ+

(
pi log

1
pi

+ (1− pi) log
1

1− pi

)

− γ−

(
qi log

1
qi

+ (1− qi) log
1

1− qi

))

footnote 1
≥ c · γ+γ−

2 ∑
yi∈Y

(pi − qi)
2

max{pi(1− pi), qi(1− qi)}
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Plugging in the definition of pi, qi from Equation (A.2.20), we get

Term 2 =
c · γ+γ−

2 ∑
yi∈Y

(
αiε̄ + βiε

γ+
− αiε + βiε̄

γ−

)2 1
max{pi(1− pi), qi(1− qi)}

=
c

2γ+γ−
∑

yi∈Y

((αε + βε̄)(αiε̄ + βiε)− (αε̄ + βε)(αiε + βiε̄))
2

max{pi(1− pi), qi(1− qi)}

=
c

2γ+γ−
∑

yi∈Y

(
αβiε

2 + βαiε̄
2 − αβiε̄

2 − βαiε
2)2

max{pi(1− pi), qi(1− qi)}

=
c(1− 2ε)2

2γ+γ−
∑

yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}
(A.2.25)

A Combined Lower Bound for ∆aux

Now, combining Equation (A.2.23), (A.2.24), and (A.2.25), we can get a lower bound
for ∆aux:

∆aux ≥
(1− 2ε)2

γ+γ−
·

2 ∑

yi∈Y
(βαi − αβi)


βαi ∑

θ∈Θ+
i

γθ

αi
log

1
γθ
− αβi ∑

θ∈Θ−i

γθ

βi
log

1
γθ




− ∑
yi∈Y

(βαi − αβi)
2

)

+
(1− 2ε)2

2γ+γ−

(
β2 ∑

yi∈Y
αi(α− αi) + α2 ∑

yi∈Y
βi(β− βi) + 2εε̄(α− β)2 ∑

yi∈Y
αi(β− βi)

)

+
c(1− 2ε)2

2γ+γ−
∑

yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}
(A.2.26)
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We can rewrite Equation (A.2.26) as

∆aux ≥
(1− 2ε)2

4γ+γ−

(
∑

yi∈Y
(βαi − αβi)

2 + β2 ∑
yi∈Y

αi(α− αi) + α2 ∑
yi∈Y

βi(β− βi)

+ 2εε̄(α− β)2 ∑
yi∈Y

αi(β− βi)

)

︸ ︷︷ ︸
LB1

+
(1− 2ε)2

4γ+γ−

(
β2 ∑

yi∈Y
αi(α− αi) + α2 ∑

yi∈Y
βi(β− βi) + 2εε̄(α− β)2 ∑

yi∈Y
αi(β− βi)

+ 2c ∑
yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}
− 5 ∑

yi∈Y
(βαi − αβi)

2

+ 8 ∑
yi∈Y

(βαi − αβi)


βαi ∑

θ∈Θ+
i

γθ

αi
log

1
γθ
− αβi ∑

θ∈Θ−i

γθ

βi
log

1
γθ






︸ ︷︷ ︸
LB2

(A.2.27)

Connecting ∆aux with ∆EC2

Next, we will show that term LB1 is lower-bounded by a factor of ∆EC2 (i.e., DEC2,y(v) ),
while LB2 cannot be too much less than 0. Concretely, we will show

• LB1 ≥ 1
16 (1− 2ε)2 ∆EC2 , and

• LB2 ≥ −2n (1− 2ε)2 η, for η ∈ (0, 1).

At the end of this subsection, we will combine the above results to connect Daux(v | y)

with DEC2,y(v) (See Equation (A.2.34)).

LB1 VS. ∆EC2 . We expand the EC2 gain DEC2,y(v) as

∆EC2 = ∑
yi∈Y

(αi + βi)(1− αi − βi)− α ∑
yi∈Y

αi(α− αi)− β ∑
yi∈Y

βi(β− βi)

= β ∑
yi∈Y

αi(α− αi) + α ∑
yi∈Y

βi(β− βi) + 2 ∑
yi∈Y

αi(β− βi) (A.2.28)
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Define




* , 16γ+γ−
(1−2ε)2 · LB1

= 4
(

∑yi∈Y (βαi − αβi)
2 + β2 ∑yi∈Y αi(α− αi) + α2 ∑yi∈Y βi(β− βi)

+2εε̄(α− β)2 ∑yi∈Y αi(β− βi)
)

# , γ+γ−∆EC2

=
(
εε̄(α− β)2 + αβ

) (
β ∑yi∈Y αi(α− αi) + α ∑yi∈Y βi(β− βi) + 2 ∑yi∈Y αi(β− βi)

)

To bound LB1 against 1
16 (1− 2ε)2 ∆EC2 , it suffices to show * ≥ # .

To prove the above inequality, we consider the following two cases:

1. εε̄(α− β)2 ≤ αβ. In this case, we have εε̄(α− β)2 + αβ ≤ 2αβ. Then,

* − #
2

≥ *
2
− αβ

(
β ∑

yi∈Y
αi(α− αi) + α ∑

yi∈Y
βi(β− βi) + 2 ∑

yi∈Y
αi(β− βi)

)

≥ β2(1 + β) ∑
yi∈Y

αi(α− αi) + α2(1 + α) ∑
yi∈Y

βi(β− βi)− 2αβ ∑
yi∈Y

αi(β− βi)

+ ∑
yi∈Y

(βαi − αβi)
2

≥ β2 ∑
yi∈Y

αi(α− αi) + α2 ∑
yi∈Y

βi(β− βi)− 2αβ ∑
yi∈Y

αi(β− βi) + ∑
yi∈Y

(βαi − αβi)
2

= 0

2. εε̄(α− β)2 > αβ. W.l.o.g., we assume β ≤ α ≤ 1. By α + β = 1 we get 2α ≥ 1.

Observe the fact that

∑
yi∈Y

(βαi − αβi)
2 = −β2 ∑

yi∈Y
αi(α− αi)− α2 ∑

yi∈Y
βi(β− βi) + 2αβ ∑

yi∈Y
αi(β− βi) ≥ 0

Rearranging the terms in the above inequality, we get

β ∑
yi∈Y

αi(α− αi) ≤ 2α ∑
yi∈Y

αi(β− βi) ≤ 2(αβ− ∑
yi∈Y

αiβi) = 2 ∑
yi∈Y

αi(β− βi)

(A.2.29)
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Hence,

# ≤ 2εε̄(α− β)2

(
β ∑

yi∈Y
αi(α− αi) + α ∑

yi∈Y
βi(β− βi) + 2 ∑

yi∈Y
αi(β− βi)

)

(A.2.29)
≤ 2εε̄(α− β)2

(
α ∑

yi∈Y
βi(β− βi) + 4 ∑

yi∈Y
αi(β− βi)

)

2α≥1
≤ 2εε̄(α− β)2

(
2α2 ∑

yi∈Y
βi(β− βi) + 4 ∑

yi∈Y
αi(β− βi)

)

εε̄(α−β)2≤1
≤ 4

(
2εε̄(α− β)2 ∑

yi∈Y
αi(β− βi) + α2 ∑

yi∈Y
βi(β− βi)

)

≤ *

Therefore, we get

LB1 ≥ 1
16

(1− 2ε)2 ∆EC2 (A.2.30)

A lower bound on LB2. In the following, we will analyze LB2.

LB2 ≥ (1− 2ε)2

4γ+γ−

(
β2 ∑

yi∈Y
αi(α− αi) + α2 ∑

yi∈Y
βi(β− βi)− 5 ∑

yi∈Y
(βαi − αβi)

2

+ 2c2 ∑
yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}

+ 8 ∑
yi∈Y

(βαi − αβi)


βαi ∑

θ∈Θ+
i

γθ

αi
log

αi

γθ
+ βαi log

1
αi
− αβi ∑

θ∈Θ−i

γθ

βi
log

βi

γθ
− αβi log

1
βi




For brevity, define µi , αi/α, and νi , βi/β. We can simplify the above equation as

LB2 ≥ α2β2 (1− 2ε)2

4γ+γ−
∑

yi∈Y

(
µi(1− µi) + νi(1− νi)− 5(µi − νi)

2 +
2c2 (µi − νi)

2

max{pi(1− pi), qi(1− qi)}

+ 8(µi − νi)


µi ∑

θ∈Θ+
i

γθ

αi
log

αi

γθ
+ µi log

1
µiα
− νi ∑

θ∈Θ−i

γθ

βi
log

βi

γθ
− νi log

1
νiβ






(A.2.31)

Denote the summand on the RHS of the above equation as LB2i. If for any yi ∈ Y we
can lower bound LB2i, we can then bound the whole sum. Fix i. W.l.o.g., we assume
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µi ≥ νi. Then

LB2i , µi(1− µi) + νi(1− νi)− 5(µi − νi)
2 +

2c (µi − νi)
2

max{pi(1− pi), qi(1− qi)}

+ 8(µi − νi)



���

���
���

���
���

��:≥ 0

µi ∑
θ∈Θ+

i

γθ

αi
log

αi

γθ
+ µi log

1
µiα

− νi ∑
θ∈Θ−i

γθ

βi
log

βi

γθ
− νi log

1
νiβ




≥ µi(1− µi) + νi(1− νi)− 5(µi − νi)
2 +

2c (µi − νi)
2

max{pi(1− pi), qi(1− qi)}

− 8(µi − νi)


νi

�
��

�
��

�
��*
≤ log m

∑
θ∈Θ−i

γθ

βi
log

βi

γθ
+ νi log

1
νi
+ νi log

1
β




≥ µi(1− µi) + νi(1− νi)− 5(µi − νi)
2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)

+
2c (µi − νi)

2

max{pi(1− pi), qi(1− qi)}

To put a lower bound on the above terms, we first need to lower bound the term

involving (µi−νi)
2

max{pi(1−pi),qi(1−qi)} . Notice that pi =
αi+βiε/ε̄
α+βε/ε̄ , and pi =

αiε/ε̄+βi
αε/ε̄+β . Therefore,

min {µi, νi} ≤ pi, qi ≤ max {µi, νi}.
We check three different cases:

• µi ≥ νi ≥ 1/2, or νi ≤ µi ≤ 1/2.
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In this case, max{pi(1− pi), qi(1− qi)} ≤ max{µi(1− µi), νi(1− νi)}. Therefore,

LB2i ≥ −5(µi − νi)
2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)

+
2c (µi − νi)

2

max{µi(1− µi), νi(1− νi)}
+ µi(1− µi) + νi(1− νi)

≥ −5(µi − νi)
2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)

+
2c (µi − νi)

2

max{µi(1− µi), νi(1− νi)}
+ max{µi(1− µi), νi(1− νi)}

≥ −5(µi − νi)
2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)
+ 2
√

2c(µi − νi)

µi−νi≤1/2
≥ (µi − νi)

(
2
√

2c− 5/2− 8
(

νi log
m
β
+ νi log

1
νi

))

(a)
≥ (µi − νi)

(
2
√

2c− 5/2− 8 log
m
β

)

Here, step (a) is because f (x) = x log m
βx is monotone increasing for n ≥ 3. When

n < 3, we have µi = 1 and νi = 0 (otherwise, there is no uncertainty left in Y) and
hence the problem becomes trivial.

• 1/n ≤ νi ≤ 1/2 ≤ µi.

In this case, we cannot replace pi, qi with µi or νi. However, notice that max{µi(1−
µi), νi(1− νi)} ≤ 1/4, we have

LB2i ≥ µi(1− µi) + νi(1− νi)− 5(µi − νi)
2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)

+ 8c (µi − νi)
2

= µi(1− µi) + νi(1− νi) + (µi − νi)
2 + (8c− 6)(µi − νi)

2

− 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)

= µi(1− νi) + νi(1− µi) + (8c− 6)(µi − νi)
2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)

≥ µi(1− νi) + (8c− 6)(µi − νi)
2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)
(A.2.32)

νi≥1/n
≥ µi(1− νi) + (8c− 6)(µi − νi)

2 − 8(µi − νi)νi log
m2

β
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To further simplify notation, we denote γ1 , 8c− 6, and γ2 , 8 log m2

β . Then the
above equation can be rewritten as

LB2i ≥ µi(1− νi) + γ1(µi − νi)
2 − γ2(µi − νi)νi

If µi − νi ≤ 1
2γ2

, then

LB2i ≥ µi(1− νi) + γ1(µi − νi)
2 − 1

2γ2
γ2νi = µi(1− νi)−

νi

2
≥ 0

Otherwise, if µi − νi >
1

2γ2
, we have

LB2i ≥ µi(1− νi) + (µi − νi) (γ1(µi − νi)− γ2νi)

> µi(1− νi) + (µi − νi)

(
γ1

1
2γ2
− γ2νi

)

>
µi − νi

2

(
γ1

γ2
− γ2

)

• νi ≤ 1/n < 1/2 ≤ µi. In this case, we have

LB2i

Eq (A.2.32)
≥ µi(1− νi) + γ1(µi − νi)

2 − 8(µi − νi)

(
νi log

m
β
+ νi log

1
νi

)

≥ µi(1− νi) + γ1(µi − νi)
2 − 8(µi − νi)

(
1
m

log
m
β
+

log m
m

)

= µi(1− νi) + γ1(µi − νi)
2 − γ2

m
(µi − νi)

> µi(1− νi) + (µi − νi)

(
γ1

n− 2
2n
− γ2

m

)

(a)
≥ µi − νi

3

(γ1

2
− γ2

)

≥ µi − νi

3

(
γ1

γ2
− γ2

)

Step (a) is because 1/n < 1/2 and therefore n ≥ 3.

Putting the above cases together, we obtain the following equations:

LB2i ≥





(µi − νi)
(

2
√

2c− 5/2− 8 log m
β

)
if µi ≥ νi ≥ 1/2, or νi ≤ µi ≤ 1/2

0 if 1/n ≤ νi ≤ 1/2 ≤ µi, and µi − νi ≤ 1
2γ2

µi−νi
2

(
γ1
γ2
− γ2

)
if 1/n ≤ νi ≤ 1/2 ≤ µi, and µi − νi >

1
2γ2

µi−νi
3

(
γ1
γ2
− γ2

)
if νi ≤ 1/n < 1/2 ≤ µi
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Fix η ≥ 0. Let c = 8
(

log 2m2

η

)2
, we have γ1 >

(
8 log m2

η

)2
, and γ2 = 8 log m2

β , so

γ1

γ2
− γ2 =

(
√

γ1 − γ2)(
√

γ1 + γ2)

γ2
> 8
√

γ1 + γ2

γ2
log

β

η

and thus we get

LB2i ≥





8(µi − νi) log β
η if µi ≥ νi ≥ 1/2, or νi ≤ µi ≤ 1/2

0 if 1/n ≤ νi ≤ 1/2 ≤ µi, and µi − νi ≤ 1
2γ2

4(µi−νi)(
√

γ1+γ2)
γ2

log β
η if νi ≤ 1/2 ≤ µi, and µi − νi >

1
2γ2

That is, if β ≥ η, we have LB2i ≥ 0 for all i ∈ {1, . . . , n}.

On the other hand, if β < η, we get 4(
√

γ1+γ2)
γ2

=
4(log m2

η +log m2
β )

log m2
β

≤ 8, and therefore

LB2i ≥ 8(µi − νi) log β
η .

Summing over all i ∈ {1, . . . , n}, we get that for β < η, it holds LB2 ≥ ∑yi∈Y |µi − νi| ·
2α2β2(1−2ε)2

γ+γ− log β
η . We hence get

LB2 ≥




−2n (1− 2ε)2 αβ log η

αβ if αβ < η

0 if αβ ≥ η

Further relaxing the above condition by αβ log η
αβ ≤ η − αβ ≤ η, we obtain:

LB2 ≥ −2n (1− 2ε)2 η (A.2.33)

Combining Equation (A.2.27), (A.2.30), and (A.2.33), we get

∆aux ≥
1

16
(1− 2ε)2 ∆EC2 − 2n (1− 2ε)2 η. (A.2.34)

Hence, we have related Daux(v | y) to DEC2,y(v) , as stated in Lemma 4.21.

Bounding ∆aux against ∆ECED

To finish the proof of Lemma 4.21, it remains to bound ∆aux against ∆ECED. In this
subsection, we complete the proof of Lemma 4.21, by showing that ∆aux(v | ψ) +

2n (1− 2ε)2 η ≥ ∆ECED,ψ(v) /64.
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Recall that ε is the noise rate of test v. Let ρ = ε
1−ε be the discount factor for inconsistent

root-causes. By the definition of ∆ECED in Equation (4.5.2), we first expand the expected
offset value of performing test v:

Exv [δoffset(xv)] = ∑
yi∈Y

(αi + βi)(1− αi − βi)ε
(

1− ρ2
)

.

Denote γ = ε
(
1− ρ2). Then, we can expand ∆ECED as

∆ECED = ∑
yi∈Y




(initial total edge weight)−(offset value)︷ ︸︸ ︷
(αi + βi)(1− αi − βi) (1− γ) −

expected remaining weight after discounting︷ ︸︸ ︷
(γ+(αi + ρβi)(α + ρβ− αi − ρβi) + γ−(βi + ραi)(β + ρα− βi − ραi))




= γ+ ∑
yi∈Y

(−γαi(α− αi) + αi(β− βi)(1− γ− ρ)+

βi(α− αi)(1− γ− ρ) + βi(β− βi)(1− γ− ρ2)
)
+

γ− ∑
yi∈Y

(−γβi(β− βi) + βi(α− αi)(1− γ− ρ)+

αi(β− βi)(1− γ− ρ) + αi(α− αi)(1− γ− ρ2)
)

= ∑
yi∈Y

(
2(1− γ− ρ)αi(β− βi) +

(
γ+(1− γ− ρ2)− γ−γ

)
βi(β− βi) +

(
γ−(1− γ− ρ2)− γ+γ

)
αi(α− αi)

)

Since γ = ε(1−2ε)
(1−ε)2 , 1− γ− ρ2 = 1−2ε

1−ε , and 1− γ− ρ =
(

1−2ε
1−ε

)2
, we have,

γ+(1− γ− ρ2)− γ−γ = (α(1− ε) + βε)
1− 2ε

1− ε
− (αε + β(1− ε))

ε(1− 2ε)

(1− ε)2

=

(
1− 2ε

1− ε

)2

α

Therefore

∆ECED =

(
1− 2ε

1− ε

)2
(

α ∑
yi∈Y

βi(β− βi) + β ∑
yi∈Y

αi(α− αi) + 2 ∑
yi∈Y

αi(β− βi)

)

=

(
1− 2ε

1− ε

)2

∆EC2 (A.2.35)
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Combining Equation (A.2.35) with Equation (A.2.34) we obtain

∆aux + 2n (1− 2ε)2 η ≥ (1− ε)2

16
∆ECED

=
1

16
(1− 2ε)2 ∆EC2

With the results from Appendix §A.2.7 and §A.2.7, we therefore complete the proof of
Lemma 4.21.

A.2.8 Proof of Theorem 4.19 Part 3:

The Key Lemma Relating ECED to OPT

Bounding the Error Probability: Noise-free vs. Noisy Setting

Now that we have seen how ECED interacts with our auxiliary function regarding the
one-step gain, it remains to understand how one can relate the one-step gain to the
gain of an optimal policy Daux(OPT | y) , over k steps. In this subsection, we make an
important step towards this goal.

Specifically, we provide

Lemma A.7. Consider a policy π of length k, and assume that we are using a stochastic
estimator (SE). Let p>e be the error probability of SE before running policy π, p⊥e,noisy be the
average error probability of SE after running π in the noisy setting, and p⊥e,noiseless be the
average error probability of SE after running π in the noiseless setting. Then

p⊥e,noiseless ≤ p⊥e,noisy

Proof of Lemma A.7. Recall that a stochastic estimator predicts the value of a random
variable, by randomly drawing from its distribution. Let π be a policy. We denote by
pe(πh) the expected error probability of an stochastic estimator after observing πh :

p⊥e,noisy = Eh[pe(πh)] = ∑
h

p(πh) ∑
y∈Y

p(y | πh)(1− p(y | πh))

where h ∈ V ×X denotes a set of test-outcome pairs, and πh denotes a path taken by
π, given that it observes h.

Now, let us see what happens in the noiseless setting: we run π exactly as it is, but
in the end compute the error probability of the noiseless setting (i.e., as if we know
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which test outcomes are corrupted by noise). Denote the noise put on the tests by Ξ,
and the realized noise by ξ. We can imagine the noiseless setting through the following
equivalent way: we ran the same policy π exactly as in the noisy setting. But upon
completion of π we reveal what Ξ was. We thus have

p(y | πh) = ∑
Ξ=ξ

p(y | πh, ξ)p(ξ | π)

The error probability upon observing πh and Ξ = ξ is

pe(πh, ξ) = ∑
y∈Y

p(y | πh, ξ)(1− p(y | πh, ξ)).

The expected error probability in the noiseless setting after running π is

p⊥e,noiseless = Eh,n[pe(πh, ξ)] = ∑
h,n

p(πh, ξ) ∑
y∈Y

p(y | πh, ξ)(1− p(y | πh, ξ)) (A.2.36)

Now, we can relate p⊥e,noisy to p⊥e,noiseless.

p⊥e,noisy = ∑
h

p(πh) ∑
y∈Y

p(y | πh)(1− p(y | πh))

= ∑
h

p(πh) ∑
y∈Y

∑
ξ

p(ξ | πh)p(y | πh, ξ)(1−∑
n

p(ξ | πh)p(y | πh, ξ))

(a)
≥∑

h
p(πh) ∑

y∈Y
∑
ξ

p(ξ | πh)p(y | πh, ξ)(1− p(y | πh, ξ))

= ∑
h,ξ

p(πh, ξ) ∑
y∈Y

p(y | πh, ξ)(1− p(y | πh, ξ))

where (a) is by Jensen’s inequality and the fact that f (x) = x(1 − x) is concave.
Combining with Equation (A.2.36) we complete the proof.

Essentially, Lemma A.7 implies that, in terms of the reduction in the expected prediction
error of SE, running a policy in the noise-free setting has higher gain than running the
same policy in the noisy setting. This result is important to us, since analyzing a policy
in the noise-free setting is often easier. We are going to use Lemma A.7 in the next
section, to relate the gain of an optimal policy DEC2,y(OPT) in the EC2 objective (which
assumes tests to be noise-free), with the gain Daux(OPT | y) in the auxiliary function
(which considers noisy test outcomes).
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The Key Lemma: One-step Gain of ECED VS. k-step Gain of OPT

Now we are ready to state our key lemma, which connects Daux(v | y) to Daux(OPT | y) .

Lemma A.8 (Key Lemma). Fix η, τ ∈ (0, 1). Let m = | supp(Θ)| be the number of root-
causes, n = |Y| be the number of target values, OPT(δopt) be the optimal policy that achieves
perr(OPT(δopt)) ≤ δopt, and ψ` be the partial realization observed by running ECED with
cost `. We denote by f avg

aux(`) := Eψ`
[ faux(ψ`)] the expected value of faux(ψ`) over all the

paths ψ` at cost `. Assume that f avg
aux(`) ≤ δg. We then have

f avg
aux(`)− f avg

aux(`+ 1) ≥ f avg
aux(`)− δopt

k
· cε

cδ
+ cη,ε.

where k , cost(OPT(δopt))), cη,ε , 2n(1− 2ε)2η, cδ , (6c + 8) log(m/δg), c , 8
(
log(2m2/η)

)2,
and cε , (1− 2ε)2/16.

Proof of Lemma A.8. Let ψ` be a path ending up at level ` of the greedy algorithm.
Recall that ∆EC2(v | ψ`) denotes the gain in fEC2 if we perform test v and assuming it
to be noiseless (i.e., we perform edge cutting as if the outcome of test v is noiseless),
conditioned on partial observation ψ`. Further, recall that ∆aux(v | ψ`) denotes the gain
in faux if we perform noisy test v after observing ψ` and perform Bayesian update on
the root-causes.

Let v = arg maxv′ ∆ECED(v′ | ψ`) be the test chosen by ECED, and v̂ = arg maxv′ ∆EC2(v′ |
ψ`) be the test that maximizes ∆EC2 , then by Lemma 4.21 we know

∆aux(v | ψ`) + cη,ε ≥
(1− ε)2

16
(
∆ECED,ψ`

(v)
)

≥ (1− ε)2

16
(
∆ECED,ψ`

(v̂)
)

=
1

16
(1− 2ε)2 ∆EC2,ψ`

(v̂) (A.2.37)

Note that ∆EC2,ψ`
(v) is the EC2 gain of test v over the normalized edge weights at step

`+ 1 in the noiseless setting. That is, upon observing ψ`, we create a new EC2 problem
instance (by considering the posterior probability over root-causes at ψ`), and run
(noiseless) greedy algorithm w.r.t. the EC2 objective on such problem instance. Recall
that cε , (1− 2ε)/16. By adaptive submodularity of fEC2 (in the noiseless setting, see
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Golovin, Krause, and Ray [GKR10b]), we obtain

max
v

∆EC2,ψ`
(v)

adaptive
submodularity
≥

f>
EC2,ψ`

−E
[

f⊥
EC2,ψ`

]

k

where by f>
EC2,ψ`

we mean the initial EC2 objective value given partial realization ψ`,

and by E
[

f⊥
EC2,ψ`

]
we mean the expected gain in fEC2 when we run OPT (δopt). Note

that OPT (δopt) has worst-case length k.

The above inequality has established a connection between DEC2,y(v) and DEC2,y(OPT) .
Now, imagine that we run the policy OPT (δopt), and upon completion of the policy
we can observe the noise. We consider the gain of such policy in fEC2 :

f>EC2 −E
[

f⊥EC2

] (a)
= p>e −E

[
f⊥EC2

] (b)
≥ p>e − p⊥e,noiseless.

The reason for step (a) is that the error probability of the stochastic estimator upon
observing ψ`, i.e., p>e , is equivalent to the total amount of edge weight at ψ`, i.e., f>

EC2,ψ`
.

The reason for step (b) is that under the noiseless setting (i.e., assuming we have access
to the noise), the EC2 objective is always a lower-bound on the error probability of the
stochastic estimator (due to normalization). Thus, E

[
f⊥
EC2

]
≤ p⊥e,noiseless.

Hence we get

∆aux(v | ψ`) + cη,ε ≥ cε

p>e,ψ`
− p⊥e,noiseless,ψ`

k
.

Here p>e,ψ`
denotes the error probability under P [Y | ψ`], and p⊥e,noisy,ψ`

denotes the
expected error probability of running OPT (δopt) after ψ` in the noise-free setting. By
Lemma A.7 we get

∆aux(v | ψ`) + cη,ε ≥ cε

p>e,ψ`
− p⊥e,noisy,ψ`

k
,

where p⊥e,noisy,ψ`
denotes the expected error probability of running OPT (δopt) after ψ` in

the noisy setting. By (the lower bound in) Lemma A.4, we know that p>e,ψ`
= pe(ψ`) ≥

pMAP
err (ψ`), and hence

∆aux(v | ψ`) + cη,ε ≥ cε
pMAP

err (ψ`)− δopt

k
,
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Taking expectation on ψ`, we get

Eψ`

[
∆aux(v | ψ`) + cη,ε

]
≥ cε

Eψ`

[
pMAP

err (ψ`)
]
− δopt

k
. (A.2.38)

Using (the upper bound in) Lemma 4.20, we obtain

f avg
aux(`) = Eψ`

[ faux(ψ`)]

≤ (3c + 4)
(

Eψ`

[
H2

(
pMAP

err (ψ`)
)]

+ Eψ`

[
pMAP

err (ψ`)
]

log m
)

(a)
≤ (3c + 4)

(
H2

(
Eψ`

[
pMAP

err (ψ`)
])

+ Eψ`

[
pMAP

err (ψ`)
]

log m
)

(A.2.39)

where (a) is by Jensen’s inequality.

Suppose we run ECED, and achieve expected error probability δg, then clearly before
ECED terminates we have Eψ`

[
pMAP

err (ψ`)
]
≥ δg. Assuming Eψ`

[
pMAP

err (ψ`)
]
≤ 1/2, we

have

f avg
aux(`) ≤ (3c + 4)Eψ`

[
pMAP

err (ψ`)
] (

2 log
1

Eψ`

[
pMAP

err (ψ`)
] + log m

)

≤ (3c + 4)Eψ`

[
pMAP

err (ψ`)
] (

2 log
1
δg

+ log m
)

≤ Eψ`

[
pMAP

err (ψ`)
]
· (6c + 8) log

m
δg

(A.2.40)

which gives us

Eψ`

[
pMAP

err (ψ`)
]
≥ f avg

aux(`)

(6c + 8) log m
δg

cδ,(6c+8) log m
δg

=
f avg
aux(`)

cδ
. (A.2.41)

Combining Equation (A.2.41) with Equation (A.2.38), we get

f avg
aux(`)− f avg

aux(`+ 1) = Eψ`
[∆aux(v | ψ`)]

≥ cε

f avg
aux(`)

cδ
− δopt

k
− cη,ε

=
f avg
aux(`)− δoptcδ

k
· cε

cδ
− cη,ε

which completes the proof.
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A.2.9 Proof of Theorem 4.19 Final Step:

Near-optimality of ECED

We are going to put together the pieces from the previous subsections, to give a proof
of our main theoretical result (Theorem 4.19).

Proof of Theorem 4.19. In the following, we use both OPT[k] and OPT(δopt) to represent
the optimal policy that achieves prediction error δopt, with worst-case cost (i.e., length) k.
Define S(π, h) to be the (partial) realization seen by policy π under realization/ hypoth-
esis h. With slight abuse of notation, we use f avg

aux

(
OPT[k]

)
:= Eh

[
faux(S(OPT[k], h))

]

to denote the expected value achieved by running OPT[k].

After running OPT[k], we know by Lemma 4.20 that the expected value of faux is lower

bounded by 2c · δopt. That is, δopt · cδ ≤ f avg
aux

(
OPT[k]

)
· cδ

2c ≤ f avg
aux

(
OPT[k]

)
· 4 log(n/δg),

where the last inequality is due to cδ , (6c + 8) log m
δg

< 8c log m
δg

. We then have

f avg
aux(`)− f avg

aux(`+ 1)
Lemma A.8
≥

(
f avg
aux(`)− δopt · cδ

)
· cε

kcδ
− cη,ε

≥
(

f avg
aux(`)− f avg

aux

(
OPT[k]

)
· 4 log

m
δg

)
· cε

kcδ
− cη,ε (A.2.42)

Let ∆` , f avg
aux(`) − f avg

aux

(
OPT[k]

)
· 4 log m

δg
, so that Inequality (A.2.42) implies ∆` −

∆`+1 ≥ ∆` · cε
kcδ
− cη,ε. From here we get ∆`+1 ≤

(
1− cε

kcδ

)
∆` + cη,ε, and hence

∆k′ ≤
(

1− cε

kcδ

)k′

∆0 +
k′

∑
i=0

(
1− cε

kcδ

)i
· cη,ε

(a)
≤ exp

(
−k′

cε

kcδ

)
∆0 +

1−
(

1− cε
kcδ

)k′

cε
kcδ

· cη,ε

(b)
≤ exp

(
−k′

cε

kcδ

)
∆0 +

kcδ

cε
· cη,ε

where step (a) is because (1− x)k′ ≤ exp(−k′x) for any x < 1, and step (b) is due to
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(
1− cε

kcδ

)k′
> 0. It follows that

f avg
aux(k′)− f avg

aux

(
OPT[k]

)
· 4 log

m
δg

≤ exp
(
−k′

cε

kcδ

)
∆0 +

kcδ

cε
· cη,ε

≤ exp
(
−k′

cε

kcδ

)(
f avg
aux(∅)− f avg

aux

(
OPT[k]

)
· 4 log

m
δg

)
+

kcδ

cε
· cη,ε

This gives us

f avg
aux(k′)

≤ f avg
aux(∅) · exp

(
−k′

cε

kcδ

)

︸ ︷︷ ︸
UB1

+ f avg
aux

(
OPT[k]

)
· 4 log

m
δg

(
1− exp

(
−k′

cε

kcδ

))

︸ ︷︷ ︸
UB2

+
kcδ

cε
· cη,ε

︸ ︷︷ ︸
UB3

(A.2.43)

Denote the three terms on the RHS. of Equation (A.2.43) as UB1, UB2 and UB3,
respectively. We get





UB1
Eq (A.2.39)
≤ (3c + 4) (1 + log m) · exp

(
−k′ cε

kcδ

)

UB2
Eq (A.2.40)

< (6c + 8) · δopt log m
δopt
· 4 log m

δg

UB3 = k · (6c + 8) log m
δg
· 2n(1−2ε)2η

1
16 (1−2ε)2 = (6c + 8) · 32 · k · log m

δg
· nη

Now we set 



k′ , kcδ
cε
· ln 8 log m

δg

δopt , δg
64·36·log m·log 1

δg ·log m
δg

(A.2.44)

and obtain exp
(
−k′ cε

kcδ

)
=

δg
8 log m . It is easy to verify that UB1 ≤ 2c · δg

4 , and UB2 ≤
2c · δg

2 .

We further set

η , δg
16·32·kn·log m

δg
, (A.2.45)

and obtain UB3 = 2c · δg
4 .
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Combining the upper bound derived above for UB1, UB2, UB3, and by Equation (A.2.43),
we get f avg

aux(k′) ≤ 2c · δg. By Lemma 4.20 we know that the error probability is upper

bounded by perr = Eψk′
[
pMAP

err (ψk′)
]
≤ f avg

aux(k′)
2c ≤ δg. That is, with the cost k′ specified

in Equation (A.2.44), ECED is guaranteed to achieve perr ≤ δg.

It remains to compute the (exact) value of k′. Combining the definition of c ,

8
(
log(2m2/η)

)2 and cδ , (6c + 8) log(m/δg) with Equation (A.2.45) it is easy to verify
that

cδ ≤ c1 ·
(

log
mk
δg

)2

· log
m
δg

,

holds for some constant c1. Therefore by Equation (A.2.44),

k′ ≤ k · c1

(
log

mk
δg

)2

log
m
δg
· 1

cε
ln

8 log m
δg

= O

(
k
cε

(
log

mk
δg

)2(
log

m
δg

)2
)

.

To put it in words, it suffices to run ECED for O
(

k
cε

(
log mk

δg

)2 (
log m

δg

)2
)

steps to have

expected error below δg, where k denotes the worst-case cost the optimal policy that

achieves expected error probability δopt , O
(

δg
(log m·log(1/δg))

2

)
; hence the completion

of the proof.
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A.3 Proofs from Chapter 5

A.3.1 Proof of Lemma 5.2:

Adaptive Submodularity of fDet

Proof of Lemma 5.2 . We first decompose each voting element into a set of voting ele-
ments, each carrying equal weights for all of its outgoing edges. Let the new voting
elements set be Σ′. Then for all σ ∈ Σ′ and v1, v2 ∈ V , it holds that

(wσ,v1 > 0) ∧ (wσ,v2 > 0)⇒ wσ,v1 = wσ,v2 .

We then show that for all σ ∈ Σ′ and v ∈ V , the function fσ,v is monotone submodular
for edges in the new bipartite graph.

Let ∆ f ((v∗, xv∗) | xA) , fσ,v(xA ∪ {(v∗, xv∗)})− fσ,v(xA) be the marginal gain of fσ,v

over set xA by selecting (v∗, xv∗). We need to show that for each xA ⊆ xB ⊆ V × X ,
and (v∗, xv∗) ∈ V ×X it holds that

∆ f ((v∗, xv∗) | xA) ≥ ∆ f ((v∗, xv∗) | xB) ≥ 0.

The proof falls naturally into three parts.

• If xv∗ = +1, then g(σ, v, xA∪{v∗}) = g(σ, v, xA) ≤ 1. Let βA = 1− g(σ, v, xA). We
have

∆ f ((v∗,+1) | xA) = fσ,v(xA ∪ {(v∗,+1)})− fσ,v(xA)

= min
{

max
(

max
v′ :(v′,+1)∈xA

wσ,v′ , wσ,v∗

)
, βA · wσ,v

}

−min
{

max
v′ :(v′,+1)∈xA

wσ,v′ , βA · wσ,v

}

=





0 if ∃v′ : (v′,+1) ∈ xA ∧ wσ,v′ > 0;

min (wσ,v∗ , βA · wσ,v) otherwise.

For both cases on the RHS, it holds that ∆((v∗,+1) | xA) ≥ ∆((v∗,+1) | xB) ≥ 0.

• If xv∗ = −1, and ∃v′ : (v′,+1) ∈ xA ∧ wσ,v′ > 0, then the edge (σ, v) is fully
covered by xA. Thus ∆ f ((v∗,−1) | xA) = ∆ f ((v∗,−1) | xB) = 0.
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• Otherwise, maxv′ :(v′,+1)∈xA wσ,v′ = 0. Therefore,

∆ f ((v∗,−1) | xA)

= wσ,v ·
(

g(σ, v, xA∪{v∗})− g(σ, v, xA)
)

≥ wσ,v ·
(

g(σ, v, xB∪{v∗})− g(σ, v, xB)
)

=∆ f ((v∗,−1) | xB)

The inequality holds because g is constructed as a concave function. Since g is
also non-decreasing, we have ∆ f ((v∗,−1) | xA) ≥ 0.

By definition fDet is a non-negative linear combination of monotone submodular
functions, and hence is also monotone submodular.
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A.4 Proofs from Chapter 6

A.4.1 Proof of Theorem 6.6:

Adaptivity Gap under Cardinality Constraint k = 2

To prove Theorem 6.6, we first establish the following Lemma:

Lemma A.9. Let V = {1, . . . , t}. Let ( f , P) be adaptive submodular. Then, let f ′(xA) ,

[ f (xA) | x1], that is, f ′ is the conditional expectation of f conditioned on the observation of
test 1. Then f ′ is also adaptive submodular. Further, the expected utilities of f and f ′ are the
same.

Proof. The conditional expectation is a linear operator, and linear combinations of
adaptive submodular functions are adaptive submodular. By the definition of f ′ and
the use of the tower rule, we get that f ad f ′ have the same expected value.

Let us assume WLOG that the optimal policy for ( f , P) starts with choosing element 1.

Lemma A.10. gapk( f , P) = gapk( f ′, P).

Proof. First, optconst are equal for the two functions, following from Lemma A.9.

Second, any policy that starts with performing test 1 will have the same expected utility
on f and f ′ (given k = 2). For policies that do not start with 1, the expected utility for
f ′ must be at most that of f , since the policy gets less information for f ′. Thus, since
we assumed that for f the optimal policy starts with 1, the optimal policy for f ′ must
remain the same as for f , getting the same expected utility.

It is obvious that, for f ′, expected utilities do not depend on observations of elements
other than 1. Thus, we can “remove all other observations”. Let the distribution
P′ defined such that the marginal for 1 is the same as P and for all other elements
a 6= 1, P [(a, ∗)] = 1 for some arbitrary fixed observation ∗ ∈ O. Then, based on the
above, gap2( f ′, P) = gap2( f ′, P′). Now we are ready to prove the upper bound on the
adaptivity gap for cardinality constraint 2.

Proof of Theorem 6.6. From the above lemmas, we know that it is enough to deal with
distributions for which only one observation is not deterministic. But such a distribution
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always factorizes (that is, the distributions for each observation are independent), and
thus we can use the theorem of [AN15], that states that the adaptivity gap is at most

e
e−1 in the case of factorizing distributions.

A.4.2 Proof of Theorem 6.7:

Adaptivity Gap under Cardinality Constraint k

Gap for Cardinality Constraint that is a Power of 2

In this subsection, we show an upper bound on the adaptivity gap for any cardinality
constraint k = 2l. We will use induction on l and start with the result of the previous
section, that is, we assume for k = 2, an upper bound on the gap is gap2.

Now we consider the case when we have a set V and an adaptive submodular function
f over V ,X , and distribution P. We construct the set Vl−1: every element in this set is
a policy of depth 2l−1 on the original problem (V ,X , P). We define the observation set
Xl−1 as vectors of observations of length 2l−1 and the distribution Pl−1 induced by P.
We also define the (adaptive submodular) function over (Vl−1,Xl−1, Pl−1) the expected
utility induced by the original problem.

It is easy to see that a policy of depth 2 over the new problem is essentially a policy of
depth 2l over the original problem.

Let the subset V ′l−1 of Vl−1 consist of “constant” policies of depth 2l−1, that is, all the
subsets of V of cardinality 2l−1. A set of two elements from this subset is equivalent to
a set of at most 2l elements from V .

We introduce the following notations:

opttree
s the expected utility of the optimal sequential policy that chooses

two elements from Vl−1 sequentially

opttree
c the expected utility of the optimal constant policy that chooses

two elements from Vl−1 without observing anything.

optset
c the expected utility of the optimal constant policy that chooses

two elements from V ′l−1, without observing anything.
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What we want to upper bound is the ratio

opttree
s

optset
c

= gapk .

By the definition of gap2 we know that

opttree
s

opttree
c
≤ gap2 . (A.4.1)

In the rest of this subsection, we are going to upper bound the term

opttree
c

optset
c

. (A.4.2)

We will use the result of Goundan and Schulz [GS07] on approximate greedy submod-
ular optimization. Theorem 1 of Goundan and Schulz [GS07] applied to k = 2 states
that the ratio of an approximate greedy policy that selects elements whose expected
marginal gain is at least α time the expected marginal gain of the optimal choice, we
get that the ratio between the expected utility of the optimal policy and that of the
approximal greedy policy is at most e1/α

e1/α−1 ≥ 1 + α.

Let us approximate optset
c by greedily choosing two elements from V ′l−1. We can view

this greedy algorithm as an approximate greedy algorithm for finding opttree
c that is

not allowed to pick elements from Vl−1 \ V ′l−1:

1. To approximate the first element the optimal sequential algorithm picks, we
choose the one from V ′l−1 with the highes expected utility. From the induction
hypothesis, we know that this choice is a gapk/2-approximation of the optimal
choice.

2. To choose the second element, we exclude all the elements from Vl−1 whose top
choice is equal to the top choice of the first element from the optimal sequential
policy. The residual base set is still a set of decision trees of depth 2l−1, but those
trees do not contain the excluded “primitive” element. Choosing the best constant
tree form this is a gapk/2-approximation of choosing the decision tree with the
highest marginal gain.

The above approximate greedy algorithm shows that one can have a set of two constant
decision trees such that their expected utility is a (1 + gapk/2)-approximation of the
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optimal choice of two arbitrary trees. Thus,

opttree
c

optset
c
≤ 1 + gapk/2 .

Reading (A.4.1) and (A.4.2) together we get

gapk ≤ gap2(1 + gapk/2)

≤ gap2(1 + (gap2(1 + gapk/4))

· · ·
≤ gap2(1 + (gap2(1 + · · · gap2(1 + gap2) · · · ))

=
log k

∑
i=1

gapi
2 =

gaplog k+1
2 − 1

gap2 − 1

≤ gap2

gap2 − 1
gaplog k

2

=
gap2

gap2 − 1
klog(gap2) (A.4.3)

Gap for Arbitrary Cardinality Constraint

From the previous part, we know that gapk ≤ gap2
gap2−1 klog(gap2) for cardinality constraints

that are a power of 2. Now we turn our attention to general cardinality constraints.
The bound will be an immediate implication of the previous sections and the following
lemma:

Lemma A.11. Let k < k′ < 2k. Then, optseq(k′) ≤ 2optseq(k).

Proof of Theorem 6.7. Let us denote the optimal policy’s expected utility after the first k
steps by optseq(k′) |k. Then,

optseq(k′) = optseq(k′) |k +(optseq(k)− optseq(k′) |k) .

Our first observation is that optseq(k′) |k can not be greater than optseq(k). Indeed, if
that were the case, then the first k steps of the optimal policy for k′ would work better
in the first k steps than the optimal policy for k itself!

The second observation is that optseq(k)−optseq(k′) |k can not be greater than optseq(k)
either. To see this, we have to use the adaptive submodular property. The term
optseq(k)− optseq(k′) |k is the conditional expectation of the marginal gain of the last
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k′ − k elements picked by the optimal policy. Implied by the diminishing returns
condition, this expected gain can not be more than if we picked the last k′ − k elements
first. The expected utility of these elements can not be more than optseq(k), for the
same reason as in the previous paragraph.

Putting these together, we get

optseq(k′) = optseq(k′) |k +(optseq(k)− optseq(k′) |k)
≤ optseq(k) + optseq(k) ≤ 2optseq(k) .

Hence it completes the proof.

Proof of Theorem A.4.2. Eq. (A.4.3) provides an upper bound on the adaptivity gap for
cardinality constraints that are a power of 2, i.e., gapk ≤ gap2

gap2−1 klog(gap2) It follows from
Lemma A.11 that for any cardinality constraint k, the adaptivity gap under general
cardinality constraints k can be upper bounded as gapk ≤ 2gap2

gap2−1 klog(gap2) .

A.4.3 Proof of Theorem 6.8:

Bounding BatchGreedy against π∗batch,k

Theorem 6.8 rests on the following Lemma, which allows to view the selection of
batches as items in a modified problem instance.

Lemma A.12. Let V = {1, . . . , t}, X be finite sets; f : 2V×X → N monotonic and sub-
modular, and P(XV ) such that ( f , P) is adaptive submodular. Let ` be some fixed integer. Let
B1, . . . ,Bs ⊆ V be subsets of size ` of the groundset V , and define, for i ∈ {1, . . . , s}, Zi = XBi

as the random outcome of the set Bi. LetW = {1, . . . , s} and P′(ZW ) be the distribution over
Z1, . . . , Zs induced by P. Let X ′ = ⋃

i∈W range(Zi). Define the function

φ : 2W×X
′ → 2V×X , φ({(a1, z1), . . . , (ar, zr)}) =

r⋃

j=1

{(v, x) : v ∈ Bj, x = [zj]v}

and define g : 2W×X
′ → N by g(S) = f (φ(S)). Then g is submodular, and (g, P′) is

adaptive submodular.

Proof. Submodularity of g is immediate (see, e.g., Nemhauser, Wolsey, and Fisher
[NWF78]). In order to prove adaptive submodularity, fix element i ∈ W , corresponding
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to Bi, and let A ⊆ W ×X ′. Since P′(A) > 0, φ(A) cannot contain two elements (v, x1)

and (v, x2) with x1 6= x2.

Consider the marginal gain,

∆g(i | A) = ∑
z

P′(zi | A)
[

f (φ(A∪ (i, zi))− f (φ(A)))
]
,

and let

φ̂ , φ(A∪ (i, zi)) \ φ(A) = {(i1, x1), . . . , (i`, x`)}.

Further let φ̂j , {(i1, x1), . . . , (ij, xj)}. It then holds that

∆g(i | A) =
`

∑
j=1

Eφ̂j−1

[
∆ f (ij | φ(A) ∪ φ̂j−1) | φ(A)

]
.

Adaptive submodularity of (g, P′) now follows from the adaptive submodularity of f ,
since ∆ f (ij | φ(A) ∪ φ̂j−1) is monotonically decreasing in A, and the set φ̂ is shrinking
in A.

Proof of Theorem 6.8. Suppose V ,X , f and P are given satisfying the requirements of
Lemma A.12. Let B1, . . . ,Bs be the collection of all m = (n

k) subsets of V . Let g,W ,X ′
and P′ denote the problem instance induced by sets B1, . . . ,Bs, as in Lemma A.12.
Note that there is a 1-1 correspondence between batch mode policies for ( f , P) and
fully sequential policies for (g, P′). Due to the adaptive submodularity of (g, P′), and
observing that by assumption (g, P′) is self-certifying (e.g., (g(S), P′) depends only on
the state of items in S) and strongly adaptively monotone (i.e., selecting more (batches
of) items never hurts), it follows from Theorem 5.8 of Golovin and Krause [GK11b] that
the greedy policy π (w.r.t. (g, P′)) satisfies

costavg(π) ≤ costavg(π
∗
batch,k)

(
ln Q + 1

)
.

Policy π greedily assembles batches; however, each batch is chosen optimally, which
is itself a combinatorially hard problem. Consider the function ∆B : 2V × 2V×X →N,
where, for B ⊆ V and xA ⊆ V ×X ,

∆B(B, xA) = ∑
xV

P(xV | xA)
[

f (xB ∪ xA)− f (xA)
]
.
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Note that implementing the greedy policy w.r.t. (g, P′) requires in every step, assuming
observations xA have already been made, identifying an optimal batch i ∈ W s.t.

Bi ∈ arg max
|B|≤k

∆B(B, xA).

However, it can be seen that ∆B(B, xA) is monotonic submodular in B for any xA, and
therefore the greedy algorithm (applied to ∆B(·, xA)) produces a near-optimal batch
j ∈ W such that ∆g(j | xA) ≥ (1− 1

e )∆g(i | xA). From Theorem 2.7 we obtain

costavg(π
g
batch,k) ≤ costavg(π

∗
batch,k)

( e
e− 1

)(
ln Q + 1

)
.

Note that BatchGreedy implements exactly this greedy algorithm. The stated result
about worst-case cost follows analogously from Theorem A.12 of Golovin and Krause
[GK11b].

245



Appendix A. Proofs

A.4.4 Proof of Theorem 6.9:

Bounding BatchGreedy against π∗seq

To begin with, we extend the definition of the conditional expected marginal benefit of
an item to that of a policy:

Definition A.13. Suppose we have selected and observed items xA ⊆ V × X , the
conditional expected marginal benefit of a policy π, denoted ∆ f (π | xA), is ∆ f (π |
xA) := E [ f (xA ∪ S(π, xV ))− f (xA) | xA] , where the expectation is computed w.r.t.
P(XV | xA).

We now state a Lemma which slightly generalizes Lemma A.9 of Golovin and Krause
[GK11b].

Lemma A.14. Assume each item has a unit cost. Let π∗ be any policy, which only picks a
number of items divisible by k, and xA ⊆ V ×X .

∆ f (π
∗ | xA) ≤

costavg(π∗ | xA)
k

max
π:costavg(π)≤k

∆ f (π | xA)

Proof. Let π be the policy that attempts to select xA, terminating if observing incon-
sistent observations, and then executes π∗. Now consider any policy of cost exactly k,
and let w(π′) denote the probability that the subtree π′ is contained in π. By adaptive
submodularity, it holds that the total contribution of π′ to ∆ f (π

∗ | xA) is bounded by
w(π′)∆ f (π

′ | xA), and therefore

∆ f (π
∗ | xA) ≤ ∑

π′ :costavg(π′)≤k
w(π′)∆ f (π

′ | xA).

Note that each policy π′ contributes cost w(π′)k to costavg(π∗ | xA). Therefore,

∑
π′ :costavg(π′)≤k

w(π′)k ≤ costavg(π
∗ | xA).

Therefore,

∆ f (π
∗ | xA) ≤ ∑

π′ :costavg(π′)≤k
w(π′)∆ f (π

′ | xA) ≤ costavg(π
∗ | xA)max

π′′

∆ f (π
′′ | xA)
k

.
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Theorem A.15. Fix any α ≥ 1 and let γ = gapk · e
e−1 . If f is adaptive monotone and adaptive

submodular on P [XV ] , and π is the BatchGreedy policy, then for all policies π∗ selecting a
number of items divisible by k, and positive integers ` and m

F(π[`k]) >
(

1− e−`/αγm
)

F(π∗[mk]).

where π[i] denotes the level-i-truncation of π obtained by running until it terminates or until
it selects i items.

Proof. The proof goes along the lines of the performance analysis of the greedy al-
gorithm for maximizing a submodular function subject to a cardinality constraint
of Nemhauser, Wolsey, and Fisher [NWF78], and its extension to the adaptive setting
by Golovin and Krause [GK11b].

We consider breaking the optimal policy into phases of length k. Without loss of
generality we assume π∗ = π∗[mk]. We derive a sequence of inequalities:

F(π∗) ≤ F(π[ik]) + αγm
(

F(π[(i+1)k])− F(π[ik])
)

. (A.4.4)

These inequalities follow from adaptive monotonicity and Lemma A.14. Here, the
factor gapk in γ is because we are approximating the optimal sequential policy of
length k with a non-adaptive policy. Applying the greedy algorithm to construct the
nonadaptive policy contributes a further factor e/(e− 1) to γ.

Using an argument as in the proof of Theorem A.10 from Golovin and Krause [GK11b],
we then have

F(π[(i+1)k])− F(π[ik]) ≥
F(π[ik]@π∗)−F(π[ik])

αγm

where @ denotes policy concatenation 2.

Now define ∆i := F(π∗)− F(π[ik]), so that (A.4.4) implies ∆i ≤ αγm(∆i − ∆i+1), from

which we infer ∆i+1 ≤
(

1− 1
αγm

)
∆i and hence ∆` ≤

(
1− 1

αγm

)`
∆0 < e−`/αγm∆0,

where for this last inequality we have used the fact that 1− x < e−x for all x > 0.
Thus F(π∗)− F(π[`k]) < e−`/αγm

(
F(π∗)− F(π[0])

)
≤ e−`/αγmF(π∗) so F(π) > (1−

e−`/αγm)F(π∗).
2According to Definition A.6 in Golovin and Krause [GK11b], the concatenation of π1@π2 is defined

as the policy obtained by running policy π1 to completion, and then running policy π2 as if from a fresh
start, ignoring the information gathered during the running of π1.
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Proof of Theorem 6.9. Theorem 6.9 follows as an immediate corollary to Theorem A.15.

Let β > 0. Let m be the smallest number, so that there exists a fully sequential policy π∗

of length mk with value F(π∗) ≥ Q. Then running BatchGreedy π
g
batch,k for ` batches

of size k, where
` = dγ ln Q/βem,

is sufficient so that F(πg
batch,k) ≥ Q− β. Now suppose P( f (S(πg

batch,k, xV )) ≤ Q− 1) >
β. Then

F(πg
batch,k) < β(Q− 1) + (1− β)Q = Q− β,

a contradiction.
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A.5 Proofs from Chapter 7

A.5.1 Proof of Theorem 7.3:

Upper Bound on the Regret of OnlineVoI

We now proceed to prove the bound on the expected regret of our online learning
algorithm.

Proof of Theorem 7.3. One way to model the non-myopic value of information problem is
to view it as a (finite horizon) Partially Observable Markov Decision Process (POMDP),
where each (belief-) state represents the selected tests and observed outcome of each
test. Formally, the POMDP can be written as

M ,
(

Ω,V , RM, PM, τ, ρ
)

. (A.5.1)

Here, Ω is the set of belief states, V is the set of actions (i.e., tests), RM
v (b) is the

(expected) reward associated with action v while in belief state b, PM
v (b′ | b) denotes

the probability of transitioning to state b′ if action v is selected while in state b, τ is the
time horizon for each session, and ρ is the initial belief state distribution.

In our problem, the transition probabilities PM can be fully specified by the conditional
probabilities of the test outcomes given the hidden state P [xv | θ]; the prior distribution
ρ on belief states can be specified by the prior distribution on the hypotheses P [θ],
and P [xv | θ]. The reward RM for running a policy π on M is the utility achieved upon
termination of the policy. More specifically, we can interpret the reward function RM

as follows: we get reward 0 as the policy keeps selecting new tests, but get (expected)
reward VoI(S(π, xV )) , maxy∈Y Eθ[u(θ, y) | S(π, xV )] if the policy terminates upon
observing S(π, xV ) and suggests a decision. The reward function measures the expected
(total) utility one can get by making a decision after running policy π.

We now consider running Algorithm 11 over k sessions of fixed duration τ. Following
the previous discussion, the problem is equivalent to learning to optimize a random
finite horizon POMDP of length τ in k repeated episodes of interaction. To establish
the regret bound of Theorem 7.3, we need the following result:

Theorem A.16 (Theorem 1 of Osband, Russo, and Van Roy [ORVR13]). Consider the
problem of learning to optimize a random finite horizon (PO)MDP M =

(
Ω,V , RM, PM, τ, ρ

)
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in k repeated episodes, and consider running the following algorithm: at the start of each episode
it updates the prior distribution over the MDP and takes one sample from the posterior, and
then follows the policy that is optimal for this sampled MDP. For any prior distribution on the
MDPs, it holds that

E[Regret(k, τ)] = O
(

τ|Ω|
√

kτ|V| log(kτ|Ω||V|)
)

.

Theorem A.16 implies that the posterior sampling strategy as employed in Algorithm 11
allows efficient learning of the MDP, given that one can find the optimal policy for the
sampled MDP at each episode. However, since finding the optimal policy is NP-hard,
in practice we can only approximate the optimal policy. In Algorithm 11, we consider
running the greedy policy (i.e., Algorithm 3) in each epoch (i.e., episode) to solve the
sampled MDP:

Corollary A.17. Let M be a sampled MDP, and c∗wc be the worst-case cost of the (worst-case)
optimal policy on M. Consider running Algorithm 3 for τ = (2 ln(1/δ) + 1) c∗wc steps. Then,
with probability at least 1− η, it achieves the optimal VoI on M.

Proof of Corollary A.17. By Theorem 4.15, we know that the greedy policy finds the
target decision region with probability at least 1− η. Furthermore, by definition we
know that each decision region Ry = {h : h ≡ xV ∧U(y | xV ) = VoI(xV )} represents
an optimal action for any of its enclosed hypotheses. In other words, a policy that
successfully outputs a decision region achieves the optimal VoI.

Recall from §7.3.2 that we denote the optimal policy on the sampled MDP in epoch `

as π∗P̃`
. From Corollary A.17, we know that Algorithm 3 achieves optimal utility with

probability at least 1− η . Hence, the expected “regret” of Algorithm 3 over π∗P̃`
is

∆̃`

(a)
≤ (1− η) · 0 + η · 1 = η. (A.5.2)

Here, step (a) is because the utility is normalized so that U ∈ [0, 1]. Note that ∆̃` in
Equation (A.5.2) refers to the difference between the value of Algorithm 3 and the value
of the optimal policy on the sampled MDP (not the optimal policy for the true MDP).
In other words, the price of not following the optimal policy is at most η.

By Theorem A.16, we know that following OPTi for epoch i achieves expected regret

O
(

τ|Ω|
√

kτ|V| log(kτ|Ω||V|)
)

.
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Further, we know that the price of approximating the optimal policy at epoch i is at
most η. Combining these two results we get

E[Regret(k, τ)] = O
(

τ|Ω|
√

kτ|V| log(kτ|Ω||V|)
)
+

k

∑
i=1

η

= O
(

τ|Ω|
√

kτ|V| log(kτ|Ω||V|) + ηk
)

,

where |Ω| = S represents the number of the belief states, |V| = t represents the number
of tests. Hence it completes the proof.
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